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Abstract 
 

 

The problem of finding a dense packing of a set 
of two-dimensional polygonal shapes within 
another larger two-dimensional polygon is called 
nesting. This problem finds wide application in 
the manufacturing, leather cutting,  and textile 
industries – in short, where material is costly so 
scrap must be minimized.  In this paper, we 
describe a new approach to solving this problem. 
It is a hybrid (or memetic) approach, which uses 
a parallel genetic algorithm and a heuristic based 
on shape information in the form of feature 
matching. In our experiments with the parallel 
GA, we tried various topologies for the 
communication among subpopulations, and 
various migration policies.  A good choice of 
communication patterns seems to give 
subpopulations more time to explore by 
themselves before they are ”contaminated” by 
individuals from other subpopulations, while still 
allowing for useful sharing of building blocks 
gained. Our test problems show this approach to 
work well in this type of problem, where the 
search domain is very large. 

1 INTRODUCTION 
Layout and cutting problems are important in many 
industries, as they involve the optimal use of valuable raw 
material. Problems of optimal arrangement of 2-D pieces 
to be cut from an initial piece of stock material are called 
nesting problems, and there are many varieties, depending 
on the shapes of the pieces, constraints on their 
orientations, etc. The problem to be addressed in this 
paper can be stated as follows: given a rectangular piece 
of stock of a specified width and indefinite length, find 
the optimal arrangement of a given set of polygonal 
“part” shapes onto that stock such that a) none of the parts 
overlaps any others, b) all are contained within the 
boundary of the stock piece, and c) the length of the stock 
piece used is minimized.  In this case, there is no 
constraint on the orientation of the part shapes, but they 
may not be “turned over.”  Note that there is no 

constraint, such as convexity, on the shape of the 
polygonal parts. 

In recent years, a number of researchers have investigated 
the problem of nesting of irregular shapes. The heuristic 
approaches taken to solve this problem can be broadly 
classified into two categories: rule-based approaches and 
stochastic algorithms.  In a rule-based heuristic, a set of 
rules is designed to try to take advantage of some 
characteristics of the shapes of the parts, placing earliest 
those with certain characteristics, packing together parts 
with certain matching features, etc. On the other hand, 
stochastic approaches such as genetic algorithms or 
simulated annealing, typically use little information about 
part shapes, instead using only simple “packing” rules and 
relying on the stochastic algorithm to vary the order in 
which these rules are applied to the parts to be nested  

The approach we have chosen is a hybrid one with strong 
reliance on a powerful feature-matching heuristic capable 
of generating fairly good nestings even without a genetic 
algorithm.  It uses part shape features to determine the 
exact placement and orientation of the parts, here 
augmented by a genetic algorithm that determines the 
sequence in which they are nested (now sometimes 
together called a “memetic” algorithm).  We have used a 
parallel GA to make the search both more global and 
more efficient. 

 
2 RELATED WORK 
A significant amount of research has been done in this 
area. Freeman and Shapira (1975), and Adamowicz and 
Albano (1976) have approached this problem by shape 
approximation, in which they approximate the shape by  
their minimum-enclosing rectangle and then pack the 
rectangles.  To overcome the waste associated with the 
rectangular approximation, attempts have been made to 
first generate pairwise rectangular clusters, if the shapes 
allowed  (Nee et al., 1986).  

Several attempts have also been made to solve this 
problem using local greedy search heuristics.  Albano and 
Sapuppo (1980) proposed an algorithm that decided the 
next part to be placed by evaluating the potential waste 
due to the placement of the part at hand. 

In 1996, Lamousin et al. proposed an algorithm that 
modifies Albano and Sapuppo’s algorithm, using the 



  

concept of No Fit Polygon (NFP) for part placement. 
Lamousin and Waggenspack (1996) also proposed 
another algorithm that uses features of the profile.  This 
algorithm matches complementary features of the part and 
the remaining area of the stock.  

Besides the deterministic approach, probabilistic and 
evolutionary techniques have been used to solve this 
problem. G-C Han and S-J Na (1996) used a two-stage 
method with a neural-network-based heuristic for 
generating an acceptable initial layout, and a simulated 
annealing algorithm for fine-tuning the solution.  In 1995, 
Ismail and Hon proposed a genetic-algorithm-based 
solution to this problem.  They generated a set of initial 
random layouts as their first generation chromosomes. The 
layouts were allowed to have parts overlapping each other. 
They constructed an objective function that tried to 
minimize the total area needed to nest them and included a 
penalty associated with the overlaps. Jain and Gea (1998) 
proposed a solution based on genetic algorithms by using 
a 2-D representation for the chromosomes. Babu and Babu  
(1999) described a genetic algorithm which aimed at 
finding an optimum sequence in which the parts are to be 
placed on the sheet (Babu and Babu, 1999).  In 2000, Sha 
and Kumar came up with a representation that encoded the 
sequence and the orientation of the part on a 2-D 
chromosome and modified the genetic algorithm operators 
to deal with that form. 

We describe here an approach that uses a genetic 
algorithm wedded with a powerful heuristic to solve the 
problem more effectively. 

 

3 PARALLEL GENETIC ALGORITHMS 
Genetic algorithms are often useful in solving highly 
multimodal problems, of which nesting is a fine example.  
Although GA’s can be made resistant to premature 
convergence, they are not immune. One technique to 
reduce the likelihood of premature convergence is 
parallelization of the GA using multiple subpopulations. 
The two most commonly used kinds of parallel GAs are 
the fine-grain GA and coarse-grain GA.  In a fine-grain 
GA, small subpopulations (or individuals) are typically 
arranged over a grid-like space, and each interacts 
frequently (for breeding, etc.) with its immediate 
neighbors.  In a typical coarse-grain (or “island”) GA, 
each subpopulation occasionally sends migrants to a 
specified set of neighbors, but the communications 
topology is typically open and frequency of 
communication low.  

In this paper, we have investigated the nesting problem 
using a coarse-grain parallel GA. 

Population Representation: In a “classical” GA, a 
binary string representation was often used.  However, for 
sequencing and other combinatorial problems, 
chromosomes often represent an ordering of entities, 
specified simply as a permutation of the integers {0, 1, …, 
N-1}. For this work, the chromosome is such a 
permutation, ranging over the indices of the parts to be 

nested, for example:  (3, 4, 5, 9, 7, 6, 8, 0, 2, 1).  In this 
example for nesting of ten parts, the chromosome would 
be interpreted as the sequence in which the parts are to be 
considered and placed on the sheet by a heuristic nesting 
rule. 

Crossover:  For this representation we considered four 
different crossover operators: partially matched crossover 
(PMX), uniform order-based crossover (UOBX), order-
based crossover (OBX) and cycle crossover (CX) (Davis, 
1991; Goldberg, 1988). 

Mutation:  The mutation operators we tested here were 
swap mutation and scramble mutation (Davis, 1991; 
Goldberg, 1988). 

Crowding and Incest Reduction:  To reduce the chances 
of premature convergence, we made the use of a DeJong 
crowding factor (Goldberg, 1988). It helps in allowing 
several distinct groups of individuals to develop and 
persist in the population.  This technique is useful when 
exploring problems that are strongly multi-modal. In 
addition, the mechanism of incest reduction (Goodman, 
1994) reduces the proportion of crossovers performed 
between very similar chromosomes.  This technique helps 
to maintain genetic diversity and thus helps in avoiding 
premature convergence. 

Elitism:  We used elitism to insure that at least one copy 
of the current generation’s best individual appears in the 
next generation. 

Fitness Function: The problem aims at minimizing the 
length used of a fixed-width piece of rectangular stock.  
However, in preliminary studies, we observed that nesting 
larger parts first often yielded a better solution.  In order 
to speed the search and exploit this, in some of our runs, 
we added a bias term to our fitness function that slightly 
favored nestings in which larger (area) parts were placed 
first.  However, the effect of this term was not found to be 
large, and we abandoned its use in the later runs.  Linear 
scaling of fitnesses was used to control selection pressure 
(Goldberg, 1988).  

 

4 SHAPE INFORMATION AND 
FEATURE MATCHING 

In our hybrid (or memetic) algorithm, shape information 
is used to effectively match complementary features on 
the parts and the stock.  In this case, building on the 
earlier work of one of the authors (Debnath, 1997), we 
have defined a feature to be an instance of two adjacent 
edges on a polygon. The data defining this type of feature 
are the lengths of the two adjacent edges and the internal 
angle between these edges. Figure 1 shows an example of 
such a feature. 

4.1 Placement Policy 

Given the next part to be nested, the algorithm determines 
what position and orientation is best for the part vis-à-vis 
the current state of the stock.  At any point, the system 
tracks a “stock profile” – a polyline comprised of portions 
of edges of stock and parts, and that includes all currently  



  

Figure 1:  Feature information 

 

open area in the stock as nested to date. Candidates for 
features at which to nest subsequent parts are located on 
this profile.  The profile will grow to include many small, 
closed areas in which no additional parts can be nested, 
and the algorithm, after numerous attempts to nest 
subsequent parts in such an area, will eventually mark the 
points in that area as “bad” points, and will refrain from 
trying to nest more parts there.   

The packing heuristic first selects the vertex on the stock 
profile (ignoring “bad” interior points) with the lowest y-
co-ordinate.  If more than one vertex has the same y-co-
ordinate, the vertex with the smallest x-co-ordinate is 
selected. This selection is based on the placement policy 
of lowest and if necessary leftmost.  The heuristic forms a 
target feature on the stock, and iterates through all the 
features of the part at hand. To each of the iterations 
through the part features it assigns a particular score. The 
orientation yielding the highest score is retained for the 
final placement. This score is calculated using the 
following parameters: 

Left Shadow Area (see Figure 2): Since our placement 
policy was selected to fill up the stock from left to right, 
any closed-off areas to the left of the stock would be 
unfavorable for the final solution.  

Bottom Shadow Area (see Figure 2): Since our 
placement policy was also set to fill up the stock from 
bottom to top, any closed-off areas towards the bottom of 
the part would again be unfavorable for the solution. 

Contact Length of the Feature (see Figure 2): To 
effectively exploit a corner feature, it was necessary to 
calculate the contribution due to the feature itself. To 
ensure good local packing, we wanted the contact length 
between the part at hand and existing stock profile to be 
maximized. Further, in order to yield comparable units in 
the scoring function, the value of this measure is squared. 

The scoring function used is thus: 

a*(Left Shadow Area) + b*(Bottom Shadow Area) + 
c*(Contact Length)2,  

where a, b < 0 and c > 0. 

 

 

 

Figure 2:  Sample part and stock illustrating some packing 
measures 

 

5 TEST PROBLEMS AND RESULTS 
In order to test our algorithm on realistic industrial 
examples, we took as the base problem a set of parts to be 
nested on steel plate stock in the shipbuilding industry.  
Complex geometry and varying sizes characterize the set 
of parts, possibly including multiple copies of the same 
part. We made several test runs to determine suitable 
operators, migration strategy, and values for various 
coefficients.  Table 1 lists the experiments and findings 
for the genetic operators and best coefficients for score 
calculation.  

Of all the crossover operators, uniform order-based 
crossover (UOBX) (see explanation below) worked best, 
both in sets of runs using each crossover operator for 
single runs and using different crossover operators for 
different subpopulations in the same run.  Considering the 
nature of this problem and the manner in which UOBX 
works, this was expected.  In the case of UOBX, there 
seemed to be a higher probability that meaningful 
building blocks were preserved.  

      

Table 1:  Experiments and findings 

Experiments Best Performance using:  

Crossover Operators: 

UOBX, PMX, CX, OBX 

UOBX 

Mutation Operator: 

Swap, Scramble 

Swap 

Values of coeff.’s a, b, c 

 

a = -1, b = -1,  

c = 2.5~3.0  

 

Briefly, by example, the UOBX operator works as 
follows: 

Step 1: Selection of parents 

   Parent 1:  1 2 3 4 5 6 7 8 9 

   Parent 2:  2 4 5 7 9 6 3 1 8 



  

Step 2: Random generation of binary template 

   0 1 1 0 0 1 0 1 1 

Step 3: The 1’s specify loci to be filled by the 
corresponding alleles of the first parent in the first child, 
and the 0’s are filled on the second child with 
corresponding alleles of the second parent. 

   Child 1 (partial):  - 2 3 - - 6 - 8 9 

   Child 2 (partial):  2 - - 7 9 - 3 - - 

Step 4: The void ‘-‘ space of the first child is filled by the 
genes of parent 2 in their order of appearance (without 
duplication, since the result must be a permutation) and the 
second child is handled correspondingly. 

   Child 1:  4 2 3 5 7 6 1 8 9 

   Child 2:  2 1 4 7 9 5 3 6 8 

Swap mutation (exchanging alleles at two randomly 
chosen loci) was observed to yield better results than 
scramble, as was again expected for this problem.  

Figure 3:  Ring and Grid Topology 

 

The set of values of coefficients given in Table 1 gives 
better performance than other combinations, although this 
search was not definitive.  We arrived at this conclusion 
by assigning different sets of coefficients to different 
subpopulations in the same run. We observed that the 
subpopulation with a= -1, b= -1, and c= 2.5 ~ 3.0 
generally yielded a better result.  A possible implication of 
this trend is that matching of the contact lengths between 
two polygons is important and can result in better packing. 

 

Figure 4:  A sample output with 28 parts 

 

Preliminary runs were made with three sets of 
subpopulation sizes:  20, 50, and 200 per subpopulation, 
and 50 seemed to be sufficient.  The crowding factor was 
set at 1/10 of the subpopulation size in all runs, as was the 
incest-reduction factor. 

For this problem, we also tried different migration rules 
using different topologies.  The topologies used are shown 
in Figure 3. Two types of topologies were tried: i) ring 
topology, ii) a variety of grid topologies. For the ring 
topology, we used eight subpopulations of 50 individuals 
each, with the single best individual of each subpopulation 
migrating to the nearest subpopulation in a counter-
clockwise direction every ten generations.  In the grid 
topology, the migration scheme was different.  In this 
case, in order to try to provide a sufficient number of 
migrants to allow for significant influence on the recipient 
subpopulation, but to avoid essentially making the 
subpopulations a well-mixed single subpopulation, one 
tenth of each subpopulation was migrated to each of its 
neighboring subpopulations, but only every tenth 
generation. The neighboring subpopulations, each 
containing 50 individuals, were defined as shown in 
Figure 3.  The design of this grid was an attempt to 
provide a diversity of communication path lengths among 
various subpopulations in the total set – i.e., within a 
vertical subring, subpopulations communicated relatively 
quickly, but between columns, communication was 
delayed.  It was observed that this grid topology yielded 
better and more consistent results than the simple ring 
topology and high migration frequency.  It may be due to 
that fact that the grid topology helped in maintaining the 
genetic diversity among subpopulations for more 
generations and thus gave the subpopulations more time to 
evolve The topologies described above were implemented 
in GALOPPS (Goodman, 1996), a GNU- licensed 
freeware developed at MSU’s GARAGe.  Figures 4 and 6 
show sample outputs of problems we tested.  Figure 4 
nested 28 parts, while for Figure 6, these parts were dupli- 



  

 

Figure 5: Plot showing each time a new best-of-population 
nesting is found in any subpopulation (exclusive of 

migration), versus generation when it occurred, for a 
sample run using the grid topology of Figure 4. 

 
Figure 6: A sample output with 56 parts. 

 
cated to yield a more challenging problem and to test the 
scalability of the algorithm.  Looking at the percentage 
utilization of the sheet, we observe that the algorithm 
gave fairly consistent results, with run time scaling more 

than linearly but less than quadratically with the number 
of objects to be nested.  The GA usually stopped making 
rapid progress after about 200 generations. Figure 5 
shows a plot of raw fitness value versus number of 
generations.  The percentage utilization of stock typically 
obtained with this particular set of shapes was 83% - 
84%.  

 

6 SUMMARY AND CONCLUSIONS 
This paper describes an application of a shape-feature-
matching heuristic and a coarse-grain parallel GA to a 
challenging form of nesting problem.  The use of shape 
information and feature matching helped in finding 
feasible solutions very effectively.  It made the search 
more efficient by doing local search within each 
evaluation of the GA.  We also tested an unusual grid 
topology and migration scheme. The results suggest that 
this led to improvement in performance of the GA. In 
industries such as shipbuilding, where the material is 
quite costly, even a half-percent improvement in packing 
density is sufficient to justify a fairly intensive search 
process, such as represented by the method described 
here.  Of course, the computational intensity of this 
approach makes it inappropriate for “real-time” 
decisionmaking on less costly nesting problems. 
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