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Comparisons of Likelihood and Machine
Learning Methods of Individual Classification
B. Guinand, A. Topchy, K. S. Page, M. K. Burnham-Curtis, W. F. Punch,
and K. T. Scribner

Classification methods used in machine learning (e.g., artificial neural networks,
decision trees, and k-nearest neighbor clustering) are rarely used with population
genetic data. We compare different nonparametric machine learning techniques
with parametric likelihood estimations commonly employed in population genetics
for purposes of assigning individuals to their population of origin (‘‘assignment
tests’’). Classifier accuracy was compared across simulated data sets representing
different levels of population differentiation (low and high FST), number of loci sur-
veyed (5 and 10), and allelic diversity (average of three or eight alleles per locus).
Empirical data for the lake trout (Salvelinus namaycush) exhibiting levels of pop-
ulation differentiation comparable to those used in simulations were examined to
further evaluate and compare classification methods. Classification error rates as-
sociated with artificial neural networks and likelihood estimators were lower for
simulated data sets compared to k-nearest neighbor and decision tree classifiers
over the entire range of parameters considered. Artificial neural networks only mar-
ginally outperformed the likelihood method for simulated data (0–2.8% lower error
rates). The relative performance of each machine learning classifier improved rel-
ative likelihood estimators for empirical data sets, suggesting an ability to ‘‘learn’’
and utilize properties of empirical genotypic arrays intrinsic to each population.
Likelihood-based estimation methods provide a more accessible option for reliable
assignment of individuals to the population of origin due to the intricacies in de-
velopment and evaluation of artificial neural networks.

In recent years, characterization of highly
polymorphic molecular markers such as
mini- and microsatellites and development
of novel methods of analysis have enabled
researchers to extend investigations of
ecological and evolutionary processes be-
low the population level to the level of in-
dividuals (e.g., Bowcock et al. 1994; Es-
toup and Angers 1998; Jarne and Lagoda
1996). Analyses of individual-based geno-
typic information could substantially im-
prove our understanding of evolutionary
phenomena and contribute to effective
management of natural populations (re-
view in Bernatchez and Duchesne 2000).
The use of individual-based methods re-
mained largely unexplored in animal pop-
ulations until recently due to a lack of
highly polymorphic markers (Bernatchez
and Duchesne 2000; Smouse and Chevillon
1998). Traditional analytical methods in
population genetics rely almost exclusive-
ly on descriptors of genetic characteriza-
tions of populations (Bernatchez and Du-
chesne 2000) and not on individual
genotypes.

‘‘Assignment tests’’ are designed to de-
termine population membership for indi-
viduals. One particular application based
on a likelihood estimate (LE) was intro-
duced by Paetkau et al. (1995; see also
Vásquez-Domı́nguez et al. 2001) to assign
an individual to the population of origin
on the basis of multilocus genotype and
expectations of observing this genotype in
each potential source population. The LE
approach can be implemented statistically
in a Bayesian framework as a convenient
way to evaluate hypotheses of plausible
genealogical relationships (e.g., that an in-
dividual possesses an ancestor in another
population) (Dawson and Belkhir 2001;
Pritchard et al. 2000; Rannala and Moun-
tain 1997). Other studies have evaluated
the confidence of the assignment (Almu-
devar 2000) and characteristics of geno-
typic data (e.g., degree of population di-
vergence, number of loci, number of
individuals, number of alleles) that lead to
greater population assignment (Bernatch-
ez and Duchesne 2000; Cornuet et al. 1999;
Haig et al. 1997; Shriver et al. 1997; Smouse
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Station Méditerranéenne de l’Environnement Littoral,
1, Quai de la Daurade, F34200 Sète, France. Kevin S.
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Figure 1. Diagrammatic representation of different methods used in statistical pattern recognition to build clas-
sifiers (adapted from Jain et al. 2000). The distinction between supervised and unsupervised learning is shown.
Rectangles connected by two arrows indicate methods that can be implemented as supervised or unsupervised.

and Chevillon 1998). Main statistical and
conceptual differences between methods
leading to the use of an assignment test
are given in, for example, Cornuet et al.
(1999) and Rosenberg et al. (2001). How-
ever, the relative power of those tests has
certainly not been fully appreciated and
empirical comparisons are scarce (Eldrid-
ge et al. 2001). Assignment tests can also
be considered as surrogates at the individ-
ual level (sensu Hansen et al. 2001a) for
other statistical tools developed earlier,
such as mixed-stock analysis (e.g., Pella
and Masuda 2001; Pella and Milner 1987).
Detailed theoretical comparison of the in-
terests and limitations of both methods
are still lacking, but empirical studies have
revealed correlations between outputs of
methods (Knutsen et al. 2001; Potvin and
Bernatchez 2001).

Assignment tests have been widely used
in different applications, including deter-
mination of degree of population differen-
tiation or to establish the relationship
among individuals within and among var-
ious taxonomic groupings (e.g., Bogda-
nowicz et al. 1997; Koskinen et al. 2001;
Marshall et al. 2000; Müller 2000; Neraas
and Spruell 2001; Nielsen et al. 2001b; Pol-
zhien et al. 2000; Primmer et al. 1999; Roe-
der et al. 2001; Roques et al. 1999; Schulte-
Hostedde et al. 2001; Sefc et al. 2000;
Spidle et al. 2001; Vásquez-Domı́nguez et
al. 2001), including hybrids (e.g., Beau-
mont et al. 2001; Congiu et al. 2001; Randi
et al. 2001), introgressed individuals (e.g.,
Martinez et al. 2001; Randi and Lucchini
2002), and ecotypes (e.g., Taylor et al.
2000). Applications of assignment tests
also include [human] forensics (e.g., Evett
and Weir 1998; Primmer et al. 2000), iden-
tification and/or source of dispersers (e.g.,
Davies et al. 1999; Eldridge et al. 2001; Gal-
busera et al. 2000; Petersson et al. 2001;
Tsutsui et al. 2001; Vasemägi et al. 2001),
phylogeographical analyses (e.g., King et
al. 2001; Zeisset and Beebee 2001), and the
evaluation of the contribution of stocked
individuals to natural populations (e.g.,
Fritzner et al. 2001; Hansen et al. 2000,
2001b) and of supportive breeding pro-
grams (Nielsen et al. 2001a; Olsen et al.
2000). Fish are among the organisms that
have received considerable attention us-
ing such tools (see Hansen et al. [2001a]
for a review). Moreover, these techniques
are now used for profiles of traits outside
the limited scope of population genetics
(Thorrold et al. 2001).

Methods of classification vary widely
based on several criteria (e.g., Jain et al.
2000) (Figure 1). Two basic classification

processes are traditionally recognized in
machine learning: supervised classifiers
and unsupervised classifiers (Figure 1; e.g.,
Duda et al. 2000; Jain et al. 2000). Super-
vised classifiers represent a group of
methods whereby individual assignment
is made to predefined classes (i.e., popu-
lations of origin). Unsupervised classifica-
tion classes are unknown and are defined
a posteriori on the basis of the degree of
difference or similarity in attributes char-
acterized from sampled individuals. Clus-
tering methods (e.g., multidimensional
scaling, principal component analysis) are
examples of unsupervised classification.

Applications of assignment testing in
population genetics first used supervised
parametric likelihood-based approaches
(Figure 1). Other machine learning classi-
fication methods are widely used in the
physical and social sciences and in other
biological disciplines (e.g. Boddy et al.
2000; Leung and Tran 2000; Manel et al.

1999; Raymer et al. 1997). Artificial neural
networks (ANNs) are a popular technique
used in machine learning (e.g., Boddy and
Morris 1999; Duda et al. 2000; Lek and Gué-
gan 2000; Ripley 1996). However, while
recognized (Hansen et al. 2001a), ANN
methods rarely have been employed for
population genetics applications (Aurelle
1999; Aurelle et al. 1999; Cornuet et al.
1996; Curtis et al. 2001; Giraudel et al.
2000; Grigull et al. 2001; Taylor et al. 1994;
Whitler et al. 1994). Other popular classi-
fication methods in machine learning,
such as decision trees (e.g., Bell 1996,
1999; Duda et al. 2000; Mitchell 1997) and
k-nearest neighbor analysis (k-NN; e.g.,
Dasarathy 1991; Duda et al. 2000) have yet
to be applied in population genetics (Fig-
ure 1). Moreover, there has not been a di-
rected effort to compare machine learning
methodologies with the likelihood-based
procedures widely used in population ge-
netics. Cornuet et al. (1996) compared the
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Figure 2. Diagrammatic representation of three de-
cision boundaries in a two-dimensional space. Decision
boundary I is purely deterministic, based on rules (e.g.,
equation 1) and classifying unknown individuals to
population A (open squares) or to individuals of pop-
ulation B (closed circles). Misclassified individuals
from population A are above the line of equal proba-
bility (see also Waser and Strobeck 1998). No learning
occurs in this case. Decision boundary II exemplifies
results of a well-designed machine learning classifier.
Classification error is reduced compared to case I, rep-
resenting the trade-off between classifier complexity
(as shown by the relatively simple shape of its decision
boundary) and classification accuracy. Decision bound-
ary III represents the classifier with no classification
error. The complex shape of the associated decision
boundary indicates overfitting of the data and likely
poor generalization to other data sets.

relative merits of ANNs to discriminant
analysis in an empirical study involving
different populations and subspecies of
honeybee (Apis mellifera). However, they
did not compare LE and ANN supervised
classifiers. Aurelle (1999) used the ap-
proach of Rannala and Mountain (1997)
(Figure 1) and ANN analysis using brown
trout (Salmo trutta) microsatellite data;
however, he did not provide a direct com-
parison of classification results or accu-
racies. Hansen et al. (2001a) briefly pre-
sented ANNs, but rejected their use
without really testing their ability to clas-
sify individuals.

The objective of this article is to de-
scribe several of the more widely used ma-
chine learning classifiers that may have
utility when used with empirical popula-
tion genetics data. We compare likelihood-
based ‘‘assignment tests’’ (Paetkau et al.
1995) with supervised machine learning
classifiers including ANN, decision tree,
and a k-NN clustering. Simulations were
conducted which estimated and com-
pared the assignment accuracy associated
with different classifiers using ranges of
parameter values (number of loci, allelic
diversity, and interpopulation variance in
allele frequency) typically encountered in
natural populations. Comparative analy-
ses were extended to empirical examples
using lake trout (Salvelinus namaycush;
Salmonidae).

Background of Machine Learning
Classifiers

Classification is a fundamental activity in
systematic biology (e.g., Wiens 1999), pop-
ulation genetics, and many other disci-
plines. Classification is performed by mea-
suring traits or features that occur in
different states for different individuals.
Supervised classifiers (Figure 1) are able
to evaluate patterns in different features
and place individuals into one population
or another. Development of assignment
tests with supervised classifiers involves
collection and evaluation of a baseline
(training) data set and a testing data set
(e.g., Duda et al. 2000). The success of a
classifier is influenced by the properties of
the baseline data set (i.e., in the context
of genotypic or haplotypic data arrays, the
number of individuals, number of loci, al-
lelic diversity, and levels of population dif-
ferentiation reflecting the degree of over-
lap in data distribution). Classification
accuracy can be measured by the total
number of unknown individuals correctly
classified to their population of origin.

Once trained, each classifier considers a
decision rule to determine if test individ-
uals of unknown origin are more likely to
have originated from one population over
another. The general analytical framework
partitions the n-dimensional feature space
into T regions, where T is the number of
populations/classes considered during the
supervised classification (also often called
‘‘output’’ classes). Each feature represents
a characteristic measured for each indi-
vidual, such as genetic locus or phenotyp-
ic trait. For a hypothetical two-dimension-
al (e.g., two loci) and two-population case,
the decision theory states, the individual
is assigned to class A if the individual’s
vector falls above a given decision bound-
ary, and is placed into class B otherwise
(Figure 2). Classifier accuracy is assessed
as the proportion of test individuals be-
longing to A (or B) correctly classified as
A (or B).

One potentially useful aspect of ma-
chine learning methodologies is that they
have the ability to learn features of base-
line population data, allowing for adjust-
ments of decision boundaries (Figure 2)
independent of input (and possible arbi-
trary decisions) from biologists. Decision
boundaries can thus be adjusted for dif-
ferent classifiers to improve assignment
accuracy and precision.

Error rates associated with each classi-
fier are easily computed. A baseline of
sampled individuals is used to develop the

classifier (training data set), and a sepa-
rate set of individuals (testing data set) is
used to estimate the assignment accuracy,
representing the error rate. Unfortunately
obtaining accurate decision boundaries
with training datasets of reasonable size
can be difficult (e.g., Duda et al. 2000;
Fielding 1999). Due to limitations of sam-
ple size, it is often difficult to partition
data sets into a set of individuals used to
test model accuracy and those used to
generalize decision boundaries for the
classifier. As far as we know, only Cornuet
et al. (1996) and Nielsen et al. (2001b)
strictly applied this rule and considered a
testing data set. In principle, classifiers
should be built and trained with large
sample sizes. Test data should be indepen-
dent from training data. Various statistical
resampling procedures such as resubsti-
tution (Cornuet et al. 1999), m-fold cross-
validation (e.g., Duda et al. 2000; Taylor et
al. 2000), and ‘‘leave-one-out’’ (e.g., Efron
1983) are currently employed to overcome
this problem. Resampling approaches are
useful, but only asymptotically converge
on the ‘‘true’’ error rate, and only with
large sample sizes which are seldom real-
ized for empirical studies of natural pop-
ulations.

Materials and Methods

Four supervised classifiers will be consid-
ered in this study: the parametric likeli-
hood-based approach of Paetkau et al.
(1995) and three nonparametric, distribu-
tion-free machine learning classifiers—a
back-propagation (multilayer perceptron)
artificial neural network (ANN), a decision
tree, and one k-NN algorithm (Figure 1). In
this study we were not interested in com-
paring classifiers (‘‘assignment tests’’)
now commonly used in population genet-
ics.

Likelihood-Based Estimator (LE)
The assignment test (Paetkau et al. 1995)
considered here is based on deterministic
likelihood estimation (LE) that assumes a
multinomial distribution of allelic values.
An individual is assigned to population A
if the ratio

L Pr(genotype � �̂ )A A� (1)
L Pr(genotype � �̂ )B B

is greater than one, and to population B if
the ratio is less than one. In the above ex-
pression, LA is the probability of the indi-
vidual’s multilocus genotype (assuming
Hardy–Weinberg and linkage equilibrium
within the source population), conditional
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Figure 3. Diagrammatic representation of a k-NN
classifier where interindividual relationships are de-
fined in likelihood estimation space. Classification of
each unknown individual x is based on individuals of
known origin in the training sample (here, circles or
squares). Unknown individual x will be assigned to the
population of its most frequent k neighbors of known
origin. Black arrows indicate misclassified individuals
for which consideration of nearest neighbors cannot
improve classification.

Figure 4. Schematic representation of a three-layer feed-forward artificial neural network (ANN). The processing
elements in the network, ‘‘neurons’’ (circles in each layer), are discrete. Signals and/or transfer functions are sent
through connections in only one direction, from input layer to output layer and no feedback connections are
permitted. Connections are given a weight w that modulates the intensity of the signal through the network. The
input layer contains encoded data (Table 1). Each training individual (x1, x2, . . ., xn) is represented by a neuron
linked to each neuron of the first hidden layers by vectors of weights w representing the incoming signal of the
networks. The connection weights w, initially taken at random, are adjusted by the gradient descent method, based
on the difference between the observed and expected outgoing signals (Duda et al. 2000).

on its origin being in a population with al-
lele frequencies �̂ .A

Using this representation, the definition
of a classification decision boundary is de-
terministically imposed by the data (i.e.,
by the probability of an observed geno-
type given the expected frequencies in
each putative population of origin) (Fig-
ure 2, case I) (see also Waser and Strobeck
1998). Likelihood estimators assume a
multinomial distribution of data, a reliable
estimate of allele frequency, Hardy–Wein-
berg equilibrium, and locus independence
(i.e., no linkage).

Authors (Cornuet et al. 1999; Paetkau et
al. 1995) noted that when alleles compris-
ing an individual’s genotype are absent in
a potential source, this leads to a likeli-
hood of zero and eliminates de facto this
population as the population of likely ori-
gin. In assignment test studies, null fre-
quencies can be accounted for in several
ways: null allele frequencies can be re-
placed by a small constant value, by the
inverse number of gene copies sampled in
each population, or using a combination
of these two procedures. In this study, in
simulations as well as for empirical data
sets, null frequencies were replaced by
0.1/2n, where n is the sampled (or simu-
lated) number of individuals in each pop-
ulation. This criterion is ad hoc, generally
used in applied and theoretical studies
(e.g., Cornuet et al. 1999). Other criteria
should be defined on a more rigorous sta-
tistical basis (Huang and Weir 2001), but
need further evaluation.

k-NN Analysis
The k-NN classifier employs a nonpara-
metric algorithm that does not assume an
underlying distribution of data. The k-NN

classifier is based on measures of interin-
dividual distance defined on the basis of
user-defined metrics. A variety of k-NN
classifications have been developed in
several disciplines (e.g., Dasarathy 1991;
Devijver and Kittler 1982; Duda et al.
2000). They are attractive because of their
simplicity in assumptions of distributional
properties of data and computational re-
quirements.

The k-NN decision rule is based on in-
dividuals of known origin whose relation-
ships in the appropriate feature space are
based on their multilocus genotype. Indi-
viduals that share common properties are
likely to belong to the same population of
origin (Figure 3). For example, unknown
individual x will be assigned to the popu-
lation most frequently identified among k-
NN individuals of known origin (Figure 3).
The proximity of individuals must then be
defined according to a metric. A large
number of potential metrics have been
proposed for k-NN classification (e.g., Das-
arathy 1991). For simplicity we have cho-
sen to consider only the Euclidean dis-
tance in LE score space, as presented in
the previous section. In this case the re-
sults of parametric likelihood computa-
tions are used as a preprocessing step for
nonparametric k-NN classification (Figure
3). Transformation of k-NN rules to the LE
space could potentially reveal deviations
of the LE decision boundary. Semagn et al.
(2000) used a similar approach using dis-
criminant analysis as the preprocessing

step. The k-NN method based on LE pre-
processing is potentially valuable in cases
where individuals are misclassified by LE,
but are close to the boundary decision line
(i.e. Pr(genotype� ) � Pr(genotype� );�̂ �̂A B

Figure 3, gray box).
An odd number of 1, 3, and 5 nearest

neighbors were considered in this study.
Results considering more neighbors are
not reported, as the use of larger numbers
of known nearest neighbors leads to lower
or identical assignment accuracy. Correc-
tion for null allele frequency was made as
for LE, substituting 0.1/2n to missing val-
ues.

Artificial Neural Networks
Artificial neural networks (ANNs) were in-
spired by the structure and process of bi-
ological cognition and learning. ANNs
learn from experience and can potentially
rapidly solve complex computational
problems. ANNs are programmed as mul-
tilayered structures possessing ‘‘neurons’’
composed of an input layer (e.g., data for
each of x individuals), one or several hid-
den layers (representing or functioning as
neurons), and an output layer represent-
ing the output classes (e.g., populations)
in which individuals are assigned (Figure
4). We used a feed-forward ANN with a su-
pervised back-propagation algorithm
(Boddy and Morris 1999; Duda et al. 2000)
which has been applied previously to pop-
ulation genetics questions (Aurelle et al.
1999; Cornuet et al. 1996; Taylor et al.
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Table 1. Summary of data coding and testing procedures for simulated and empirical data sets used for each classification method

Classifier Coding of data Testing in simulated data sets Testing in empirical data sets

Parametric
Likelihood estimation Use the observed probability of Testing made on 1000 independent individuals Leave-one-out

the individual multilocus genotypes

Nonparametric
k-NN in likelihood space Likelihood method preprocessing Same as for likelihood estimation Leave-one-out
Artificial neural network 0, 1, or 2 (0 if the allele is not Same as for likelihood estimation Cross-validation

represented in the individual, 1 Five iterations
if the individual is heterozygous at a Validation file used
given locus, 2 if it is homozygous) Training: 80%

Testing: 20%
Decision tree Same as for ANN Same as for likelihood estimation Cross-validation

Five iterations
Training: 80%
Testing: 20%

Figure 5. Diagrammatic representation of a decision
tree (DT). Classification is performed by a tree struc-
ture that partitions sample data. Starting from the root
(i.e., all unclassified individuals), each node in the tree
repartitions individuals on the basis of feature values
(e.g., allele states) that result in maximal information
gain, quantified in terms of reduction in entropy within
groups (see text for details).

1994). Each neuron in the network is
linked to other neurons of adjacent layers,
and neurons receive information through
these links. Inner hidden layers define vec-
tors of weight w for connections of each
input neuron with each hidden neuron to
process the incoming signal (Figure 4).
The input signal is passed through a
‘‘transfer function’’ to produce the outgo-
ing signal (classification) (Figure 4) (e.g.,
Duda et al. 2000; Ripley 1996). Classifica-
tion of each individual is made to the pop-
ulation where the outgoing signal is the
largest. The ANN is really a machine learn-
ing approach that facilitates searches for
decision boundaries (i.e., combinations of
weights w), minimizing the error rate. Us-
ing a combination of training and testing
datasets, different networks can be built,
each represented by different combina-
tions of weights resulting from a search

process (Figure 4) in a multidimensional
space. Precautions must be taken to avoid
overfitting (see below).

In ANNs, each allele is coded following
Cornuet et al. (1996). For each locus, the
alleles are coded as 0 if no copy was pre-
sent, as 1 if one copy is present (hetero-
zygous individual), and as 2 if two copies
are present (homozygous individual).
Hence each individual of the input layer is
characterized by a vector of [0,1,2] values
specifying the multilocus genotype (Fig-
ure 4). Four hidden layers were consid-
ered and the two classes (potential pop-
ulation of origins) representing the output
layer were used for both simulated and
empirical data sets.

ANNs can ‘‘learn’’ features of a training
data set. However, weights established for
training data may not be generalizable to
other data sets, even from the same pop-
ulations. This can lead to overfitting (Fig-
ure 2, case III), when a testing data set is
used to validate the network (Table 1).
For optimal generalization of the results
(i.e., the combinations of weights w issued
for training), overfitting can be prevented
by using additional validation data sets.
Classification errors of individuals con-
tained in a validation data set are used to
stop training and to select an optimal
combination of weights (e.g., Duda et al.
2000; Karystinos and Pados 2000). In this
study the network having the lowest error
rate in the validation data set was used.
The testing data set was then used to es-
timate error rates and the accuracy of the
selected ANN. Such a ‘‘stopping rule’’ has
previously been used to prevent overfit-
ting in an ecological application (Karul et
al. 2000). Other means of avoiding overfit-
ting include selection of a minimum num-
ber of ‘‘neurons’’ (i.e., minimizing the
number of hidden layers) (Figure 4) (Cor-
nuet et al. 1996). Too many neurons can

lead to overfitting of the training data set,
while employing too few may impede
problem solving (e.g., Duda et al. 2000;
Ripley 1996). Adjustments are time-con-
suming, but necessary. The ANN classifier
used in this study was built and per-
formed with Propagator software (ARD
Corp.).

Decision Tree
Decision trees (DTs) are very popular ma-
chine learning classification methods be-
cause they create knowledge models that
are easily comprehensible (Mitchell 1997).
Mitchell (1997) and Quinlain (1993) pro-
vide detailed discussions of the methods
for building decision trees. The distinction
is often made between methods using con-
tinuous rather than discrete, categorical
variables (e.g., Bell 1999). The classifica-
tion is performed using a tree structure
that partitions the input space based on
sample data (Figure 5), classifying individ-
uals by sorting through the ‘‘tree’’ from
the base in ‘‘root’’ to ‘‘leaf’’ nodes (e.g.,
Bell 1999; Duda et al. 2000; Mitchell 1997).
Starting at the root (e.g., a mixture of in-
dividuals originating from different popu-
lations), each node in the tree contains a
test question about a single variable (or
feature) (Figure 5). The critical step in the
decision tree is to specify which feature A
(e.g., alleles) to test at each node. This de-
cision is made considering first the entro-
py S of each variable with entropy defined
as

c

S � �p log p , (2)� i 2 i
i�1

with p representing the proportion of in-
dividuals sharing a particular state for a
given allele and c representing the number
of states (0, 1, 2 coding for the copy of
each allele; see Table 1). Information gain
is measured by reduction in entropy with-
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Table 2. Mean error rates (with standard deviation in parentheses; 10 replicates) of each classifier for 5 and 10 loci over the range allelic diversity and
levels of inter -population variance considered in this study

Low-diversity case (mean 3 alleles per locus) High-diversity case (mean 7 alleles per locus)

Low FST High FST Low FST High FST

5 loci 10 loci 5 loci 10 loci 5 loci 10 loci 5 loci 10 loci

Likelihood estimation 33.5 (1.8) 25.6 (1.6) 8.4 (0.9) 3.0 (0.4) 28.4 (1.4) 21.4 (1.7) 4.3 (0.3) 0.45 (0.1)
k-NN 1 40.2 (2.2) 34.7 (2.0) 15.2 (1.9) 5.8 (0.9) 39.6 (4.1) 34.5 (3.6) 4.8 (0.8) 0.9 (0.3)

3 45.5 (1.9) 36.3 (2.3) 14.4 (1.7) 5.5 (0.8) 36 (3.6) 31.2 (3.0) 5.6 (0.5) 0.9 (0.3)
5 48.0 (2.1) 31.6 (2.1) 12.5 (1.7) 6.2 (0.6) 33.7 (3.3) 28.5 (3.1) 5.6 (0.6) 1.2 (0.3)

Decision tree 39.5 (1.7) 38.6 (1.6) 18.3 (1.1) 19.7 (1.0) 40.3 (1.9) 38.1 (1.8) 10.5 (1.0) 8.6 (0.9)
Neural networks 30.7 (1.3) 25.0 (1.4) 6.2 (0.9) 2.3 (0.3) 27.5 (1.1) 20 (0.5) 3.1 (0.3) 0.9 (0.2)

in the subsets of individuals before and af-
ter splitting. Thus at each split, all the at-
tributes are evaluated to select the most
discriminating feature resulting in a split.
Information gain G(S,A) of a feature A is
estimated by incorporating entropy as

�S �vG(S, A) � S � S . (3)� v�S�v∈�0,1,2�

Sv represents the subset of S for which at-
tribute A has value v (Mitchell 1997). De-
cision tree analyses were performed using
the C4.5 program (Quinlain 1993).

Simulated Data
It is important to assess how classifier as-
signment accuracy depends on properties
of data given the now widespread use of,
for example, SNPs in human genetics. Fac-
tors such as the degree of population dif-
ferentiation, allelic diversity, and total
number of loci have previously been eval-
uated for likelihood-based estimators
(e.g., Bernatchez and Duchesne 2000;
Smouse and Chevillon 1998) and will be
examined here for each classifier. Levels of
population differentiation are known to in-
fluence assignment accuracy (Cornuet et
al. 1999; Smouse et al. 1982). We consid-
ered two levels of interpopulation vari-
ance (Wright 1965) in allele frequency rep-
resenting a plausible range of population
differentiation (FST � 0.01 and FST � 0.1 per
locus; hereafter a low and high FST case,
respectively). Five and 10 loci were con-
sidered to represent the range of loci used
in many applied studies. Finally, two dif-
ferent levels of allelic diversity—low
(three alleles per locus) and high (eight
alleles per locus)—were considered. Indi-
viduals were drawn independently by gen-
erating two random alleles with pre-
scribed probabilities at every locus. For
each experiment we randomly drew 50
training individuals for each population
from allelic distributions. Fifty individuals
were considered here in baseline data sets
as reflecting sample sizes per population
generally used in applied studies. Smaller

sample sizes can introduce bias because
of inaccuracies in the estimation of allele
frequencies that can influence assignment
results. Ten replications of this experi-
ment were made with 10 different baseline
(training) data. Hence 10 different classi-
fiers were constructed and compared in
each case.

Empirical Data
Broodstocks for each of three lake trout
hatchery strains (Marquette [SMD], Isle
Royale [SIW], and Seneca Lake [SLW])
used in this study are maintained at U.S.
Fish and Wildlife Service hatcheries. De-
tails concerning data collections, as well
as DNA extraction and polymerase chain
reaction (PCR) protocols for the eight
polymorphic microsatellite loci (Ogo1a,
One�9, One�10, Sco�19, Sfo1, Sfo12, Sfo18,
and Ssa85) used are given in Page (2001).
The SMD and SIW strains originate from
native Lake Superior lake trout popula-
tions. The SLW strain was derived from a
native population from Seneca Lake, a
small lake in New York state. Preliminary
works (Guinand B, Page KS, and Scribner
KT, unpublished results) have shown that
such a difference in the origin of the sam-
ples was reflected in the level of popula-
tion differentiation as measured by FST.
The level of population differentiation be-
tween the SMD and SIW strains was �0.01
across all loci and will be used as the
‘‘low’’ FST case. The level of population dif-
ferentiation of both the SMD and SIW
strains with SLW was �0.1 across all loci.
SIW-SLW will be used as the ‘‘high’’ FST

case.

Estimating Error Rates for Simulated
and Empirical Data Sets
Classification error rates associated with
each method for simulated data sets (10
randomly drawn baseline data sets for
each method; see above) were established
using 1000 independent simulated test in-
dividuals derived from the same allele fre-
quency distributions. For each method,

standard deviations of classification error
rates were thus established for those 10
replicates. The number of replicates was
kept low, because results indicated low
standard deviations and consistency of
mean error rates for each method when
independent tests individuals were used.
Extending the number of replicates was
not required and was computationally in-
tensive. For empirical data sets, proce-
dures were specific to each classifier (Ta-
ble 1). Error rates for the likelihood
estimation and k-NN were computed with
a leave-one-out procedure, as is frequently
done in empirical studies. The accuracy of
the ANN was assessed using a cross-vali-
dation procedure after drawing individu-
als at random for a validation data file. In-
dividuals where randomly selected in a
fivefold cross-validation procedure (80%
of individuals used for training and 20%
for testing). Different cross-validation pro-
cedures allocating more or fewer individ-
uals to the training and testing data sets
have been tested (e.g., Huberty 1994).
Classification errors were shown to be al-
most constant (�2.5% for reported error
rates) and did not affect the relative ac-
curacies of the ANN and DT classifiers or
the results of this study for empirical data.
The leave-one-out procedure is possible
with ANN (e.g., Aurelle et al. 1999), but it
is computationally very intensive because
a different classifier must be constructed
for each individual tested.

Results

Assignment accuracies associated with
each classifier varied across simulated
data sets (Table 2). Classification error
rates were generally lower when loci with
high allelic diversity were used, when
large numbers of loci were considered,
and when population differentiation was
high.

Likelihood and ANN classifiers outper-
formed other methods across all case
studies considered (Table 2). The k-NN
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Table 3. Summary of classification error rates
(%) reported by each classifier for Salvelinus
namaycush empirical data sets

Classifier

Low FST

case
SMD-SIW

High FST

case
SIW-SLW

Likelihood estimation 39.2 10.2
k-NN 1 37.3 12.0

3 50.0 10.2
5 48.0 11.1

Decision treea 35.1 20.5
Neural networksa 17.9 4.0

a Average over five iterations (Table 1). For decision tree
and neural networks, reported results represent aver-
ages over five iterations using various test (and vali-
dation) data sets (see Table 1). For neural networks,
ranges of classification error rates never encompassed
the classification error rates reported for the likelihood
estimation case.

and DT classifiers were comparatively less
accurate over the range of conditions sur-
veyed. Based on classification error rate,
ANNs marginally outperform the likeli-
hood estimation. The range of differences
in error rate between ANN and LE classi-
fications was 0.6–2.8%, except in one case
(high diversity, high FST, 10 loci case; Ta-
ble 2). However, standard deviations
around mean estimates of assignment ac-
curacy were overlapping between LE and
ANN classifiers, reflecting similar classifi-
cation performance (Table 2). Generally
the error rate decreases slightly more
from the 5 locus case to the 10 locus case
for LE than for ANN, indicating that the
number of loci is likely more important for
the LE classifier than for ANN.

The relative performance of each clas-
sifier when applied to empirical data dif-
fered from results observed for simulated
data sets. The ANN outperforms the like-
lihood estimate in both cases considered
(Table 3). Estimated error rates for the DT
and k-NN classifiers were slightly lower
than the error rate associated to the like-
lihood estimation in the low FST case (Ta-
ble 3).

Discussion

Classification of individuals to populations
of likely origin based on multilocus geno-
types is a growing area of interest in pop-
ulation genetics (e.g., Bernatchez and Du-
chesne 2000; Hansen et al. 2001a; Waser
and Strobeck 1998). Among the numerous
assignment methodologies proposed, the
Paetkau et al. (1995) likelihood estimation
is computationally simple and is the most
frequently employed (e.g., Hansen et al.
2000, 2001; Kyle and Strobeck 2001; Pol-
zhien et al. 2000; Pope et al. 2000). Super-

vised machine learning classifiers have
been used less frequently in population
genetics. Only ANN methods have been
used effectively (Aurelle et al. 1999; Cor-
nuet et al. 1996; Giraudel et al. 2000; Taylor
et al. 1994). We compare for the first time
machine learning classifiers with likeli-
hood-based estimation using common
data sets representing a wide range of con-
ditions (Tables 2 and 3).

Low classification error rates have pre-
viously been reported for ANN, particular-
ly when the degree of population differ-
entiation is low (Aurelle et al. 1999;
Cornuet et al. 1996). This finding is con-
firmed in this study based on simulated
and empirical data sets. The ANN classifi-
er outperformed all other classification
techniques evaluated for most of the pa-
rameter combinations and underlying
data distributions (Tables 2 and 3). Only
one exception occurred: where LE outper-
formed ANN (high allelic diversity, high
FST, 10 loci case; Table 2). When different
classifiers previously were used (Cornuet
et al. 1996; Taylor et al. 1994), the authors
did not report results from simulations.
The results reported indicated that ANN
reduced error rates by more than 5% over
other methods in cases where population
differentiation was low. This range in es-
timation of error rates is typically ob-
served in the empirical data between ANN
and other classification techniques (Table
3), but not in simulated data sets, where
the range between ANN and LE classifica-
tions was lower (0–2.8%; Table 2). The er-
ror rates based on likelihood classification
(assignment test) and ANN are nearly
equivalent for simulated data sets (Table
2), but not for empirical examples (Table
3). Of interest is that error rates associat-
ed with likelihood classification were sim-
ilar for both the empirical examples and
simulated data sets (Tables 2 and 3). Error
rates of DT and k-NN classifiers were gen-
erally several percent higher in simulated
data sets compared to empirical data sets,
regardless of the number of loci, allelic di-
versity, or the degree of population differ-
entiation (Table 2). DT and k-NN classifi-
cations provide better results in the
empirical examples, where their error
rates are very close or slightly outperform
the assignment accuracy associated with
LE (e.g., empirical low FST case; Table 3).

Based on the results for the simulated
and empirical data sets, no single classifi-
cation method appears more adapted to
multilocus genotype data. Machine learn-
ing classifiers generally exhibited large dif-
ferences in assignment accuracy between

simulated and empirical data sets (Tables
2 and 3), suggesting a lack of general ap-
plication or, minimally, that assignment
accuracy should be examined on a case-
by-case basis (Duin 1996). Disparities in
results could be due to particular features
of the empirical data that are not present
in the simulated data or to differences in
the manner in which error rates are esti-
mated in the simulated and empirical data
sets.

Empirical data sets always deviate from
underlying model assumptions. Classical
assignment tests such as LE (Paetkau et
al. 1995) and others (e.g., Pritchard et al.
2000) assumed random mating and inde-
pendence of alleles and loci (i.e., expec-
tations of observing multilocus genotypes
in populations can be estimated from al-
lele frequencies). Hatchery strains are
characterized by departures from Hardy–
Weinberg equilibrium at several loci and
low levels of linkage disequilibrium be-
tween loci (Guinand B, Scribner KT, Page
KS, and Burnham-Curtis MK, unpublished
data). The influence of departures of un-
derlying assumptions is largely unknown.
We may hypothesize that machine learn-
ing classifiers can learn patterns present
in data that likelihood estimation cannot.
This represents a profitable area of future
research.

Error rates are not reported in the same
way in simulated and empirical data sets
(Table 1). In simulations, error rates rep-
resent ‘‘true’’ error rates because testing
individuals were independent from the
training data set used for classifier design
(Table 2). This is not the case for empiri-
cal data because of the cross-validation
scheme (Table 1). Reported error rates
are likely biased (Table 3), despite precau-
tions such as using a validation data set
to avoid overfitting in ANN. The use of in-
dependent samples, as is done in the sim-
ulated data sets, is believed to minimize
bias in estimation of error rates (Duda et
al. 2000; Fielding 1999; Fielding and Bell
1997; Salzberg 1997). Bias in estimating ac-
curate error rates with ANN was recently
reported by Manel et al. (1999) for an eco-
logical application. Flexer (1996) reviewed
experimental studies using ANNs in the
machine learning literature. He reported
that only 3 of 43 studies (7%) used a sep-
arate data set for parameter investigation,
leaving open the possibility that many of
the reported error rates of such ANN clas-
sifiers were overly optimistic. For the pres-
ent study, the relative merits of classifiers
are thus more appropriately assessed
using simulated data sets. Previous popu-
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lation genetics studies considering ANNs
(Aurelle et al. 1999; Cornuet et al. 1996;
Taylor et al. 1994) dealt only with empiri-
cal data sets and cross-validation (or
leave-one-out) testing. When comparisons
with other classifiers were made on em-
pirical data (discriminant analysis) (Cor-
nuet et al. 1996; Taylor et al. 1994), error
rates were reduced by more than 7% with
ANNs. Similar improvements in assign-
ment accuracy were seen in analyses of
our empirical data (Table 3).

An additional source of assignment er-
ror from empirical data is caused by sam-
pling error. Only a small number of indi-
viduals are typically sampled in each
population. Classifiers are thus frequently
built only on these limited data, and are
incapable of capturing all potential infor-
mation present in the entire population
(e.g., poor estimation of allele frequency
and presence/absence of rare alleles). If in-
tuitively important (e.g., Smouse and
Chevillon 1998), the role of the number of
baseline individuals used for population
assignment has rarely been considered.
To our knowledge, only Rosenberg et al.
(2001) investigated the paramount impor-
tance of this parameter in an empirical
study of chicken breeds. Moreover, sam-
ples can be affected by gene correlations
attributed to behavioral or ecological
characteristics of the species studied or
high levels of coancestry in domestic
hatchery strains (e.g., in fishes, related-
ness between individuals or family struc-
ture) (Hansen et al. 1997).

The performance of all classifiers is af-
fected by the nature of the problem and
the data (Fielding 1999:chap. 8). Decisions
to use one classifier over another should
be based on criteria and techniques for
ranking performances (Duin 1996; Fielding
1999; Salzberg 1997). However, this crite-
rion alone is not sufficient (Duin 1996; see
also Hansen et al. 2001a). Classifier sim-
plicity (i.e., a classifier that does not re-
quire excessive parameter adjustment) is
another valuable criterion. As shown in
this study, ANNs, while consistently the
most accurate method, are conceptually
and computationally more difficult to use.
A classifier such as likelihood estimation
(Paetkau et al. 1995) or discriminant anal-
yses (e.g., Beacham et al. 1999; Douglas
and Brunner 2002; Schmidt 1999) may
thus be preferred. Similar sentiments have
been forwarded based on studies compar-
ing classifiers in ecological (e.g., Leung
and Tran 2000; Manel et al. 1999) and con-
servation-oriented (Riordan 1998) appli-
cations, where complex classifiers includ-

ing ANNs performed only slightly better
than other classifiers.

Conclusion

Results from simulated and empirical data
sets do not categorically demonstrate that
one classification method is superior to
another (Tables 2 and 3). ANNs and other
machine learning techniques employed in
this study seem to be able to capture ad-
ditional information present in empirical
data to improve classification. The com-
paratively simple, deterministic likelihood
estimation proposed by Paetkau et al.
(1995) classifies individuals with accura-
cies comparable to ANNs (Table 2). Other
comparisons of these classifiers are need-
ed to understand how classification accu-
racy may be affected (or biased) by model
assumptions ( linked loci, heterozygote ex-
cess or deficit). For empirical cases where
even low levels of linkage and departures
from Hardy–Weinberg are observed, the
use of machine learning classifiers could
lead to a better understanding of the fac-
tors that determine classification accura-
cy for the discrete, multistate characters
commonly used in population ecology and
genetics.
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