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Abstract. The capability of multi-objective evolutionary algorithifddOEAs) to

handle premature convergence is critically important when appdieeal-world

problems. Their highly multi-modal and discrete search spdea ofakes the re-
quired performance out of reach to current MOEAs. Examininguheamental

cause of premature convergence in evolutionary search thas fgroposing of a
generic framework, called HEMO, for evolutionary multi@tijve optimization.

HEMO is characterized by its simultaneous maintenance ofichuils of all de-

grees of evolution in hierarchically organized repositotigsts continuous inflow
of random individuals at the base repository, by its intrihgéécarchical elitism
and hyper-grid-based density estimation. Two experiments demn#s search
robustness and its capability to provide sustainable evolutiseargh for difficult

multi-modal problems. HEMO makes it possible to do reliabldti-objective

search without risk of premature convergence. The paradignratisition of

HEMO to handle premature convergence is that instead of ttgimgcape local
optima from converged high fithess populations, it triesamtain the opportunity
for new optima to emerge from the bottom up as enabled Ihyetarchical organi-
zation of individuals of different fitnesses.

1 Introduction

After a decade of intensive study on evolutionary muijective optimization (EMO),

extensive insight has been obtained regarding convergenicthe diversity of the Pareto
front. Several successful multi-objective EAs haverged, such as PESA [1], NSGA-II
[4], and SPEA2 [14]. However, the capability to handlenatire convergence for diffi-
cult multi-modal optimization problems has attracted ificeht attention. The per-
formances of modern MOGAs are usually compared on sasyeantinuous test prob-



lems [5]. The scalability of MOEASs is focused on tlzalability over the objective di-
mension rather than over the problem difficulty [11].f&tunately, many real-world
problems are characterized as highly multi-modal in kididcrete search spaces. With-
out careful attention to the premature convergence issoedern MOGAs will easily
fail to find the true Pareto fronts for these probldB8jsand the performance comparison
results will be misleading for MOGA practitioners.

Based on the research on dealing with premature conwEr@érsingle-objective EA
search [9], a sustainable multi-objective optimizafiamework called HEMO (Hierar-
chical Evolutionary Multi-objective Optimization) isgposed in this paper. In addition
to the external Pareto archive commonly found in PBE®# SPEA, HEMO features
hierarchically organized archives of individuals witHfatient fithess ranks, a “work-
shop” subpopulation associated with each archive, arahdom individual generator
that continually feeds raw genetic material into theest-level archive. By incorporat-
ing favorable features from PESA [1], SPEA [12], and HR@rarchical Fair Competi-
tion) EA model [9, 10], and extending ideas from the impddu&GA-II [3], this frame-
work promises to have strong capability to avoid prematorerergence in EMO and
thus to constitute a sustainable search procedure fangdifficult real-world prob-
lems.

2 Convergence, Diversity and Premature Convergencein EMO

From the first generation of modern MOGAs such as NSSREA, and PAES to the
improved versions like NSGA-Il, SPEA2 and PESA, muchnditbe is allocated to di-

versity maintenance of the Pareto front by estintathe density of individuals along the
Pareto front (SPEA2, NSGA-Il, PESA), ensuring suffitiselection pressure in special
cases (SPEA2), utilization of elitism (NSGA-II), anther efforts to obtain computa-
tional efficiency. However, the diversity along thar&o front is different from the di-
versity required for avoiding premature convergence, wisithbeled as lateral diversity
in [3]. The capability to maintain lateral diversitgnes widely among MOGAs, which
contributes much to the performance differences foerdifft test problems.

2.1 Performance Comparison of Modern MOGAS

In terms of lateral diversity maintenance, PESA, MSG and SPEA2 have different
strategies, which largely determine their advantages disablvantages. Among the
three, PESA is the greediest algorithm. By selectirgntiating pool only from the cur-
rently discovered Pareto front, it is on one extrefraditsm and depends strongly on the
mutation operator for exploration. As a result, PESA thasfastest convergence speed,
but is only good for continuous, relatively simple protdeith is shown to be inferior on
the T4 test function, for example, which is a continuouwsti-modal problem [1]. It can
be expected that the uncontrolled, extreme elitism offPE® make PESA unusable for
highly discrete multi-modal problems.

By maintaining a constant size of the archive (parpopulation, SPEA2 and NSGA-
Il allow the persistence of dominated individuals in sagsewhich the non-dominated



individuals do not fill the archive population. So for seontinuous multimodal test
functions such as QV and KUR [14], SPEA2 and NSGA-Il dremm to be able to
achieve good performance. However, for other multimpdalblems in which there are
too many non-dominated individuals, SPEA2 and NSGA-II wailkays select mating
individuals from the current Pareto front, in effect detjng to the extreme elitism case
of PESA. This uncontrolled elitism makes NSGA-II withenutation perform poorly on
difficult multimodal problems such as ZDT4, ZDT6, and Grielwd3]. As high muta-
tion rate is not the solution to premature convergeewen with mutation, NSGA-I1I will
fail on other difficult multimodal problems. To explicitlyaintain the dominated indi-
viduals to promote lateral diversity, Deb and Goel [3]ppsed the controlled elitism
NSGA-II, which turns out to be very successful. Thadmea is to allocate a predefined
distribution of individuals to each current Pareto frantNSGA-II. However, as the
fronts in NSGA-II usually move in clusters to bettegions of the objective space based
on limited evaluations (for minimization problemshete is increasing risk that all
fronts get trapped in local Pareto fronts, and gradudlé/ekploratory capability will be
lost. This is attributable to the fithess assignnsahteme of NSGA-II, which is based on
the relative fronts, and on the convergent natur@mfentional GAs.

2.2 Prematur e Conver gence and the I ssue of Exploitation vs. Exploration

To a large extent, the premature convergence problerMi@ & similar to of the situa-
tion in single-objective EAs. Most previous studiesilited the cause of premature
convergence to the loss of diversity of the populatiod proposed various diversity-
oriented approaches to increase the population divensityrbte force.” Representative
methods include increasing the mutation rate; introducemydom individuals into
highly converged populations, and using diversity-detectiah inoreasing techniques.
All these methods are shown to ameliorate only pértthe premature convergence
problem. For example, in genetic programming, a high muta&ite usually destroys the
good solutions evolved and, despite the diversity of thmulption, no progress can be
made with this “brute-force” diversity maintenance.

Actually, the loss of diversity is only a symptom oéprature convergence. The more
fundamental reason is, instead, the loss of exploratapability. In single-objective
EAs, the absolute average fitness of the whole popualéiconstantly increasing as the
result of fitness-biased selection. The consequendkats“new explorer” individuals
(i.e., early individuals in a new region of the seasgace), whether the offspring of
mutation or crossover or randomly generated, find itegasingly hard to survive, since
these explorer individuals usually have low fitness unifiicgent exploration in the new
search region is conducted. Rare high-fithess “exploratividuals, due to their sparse-
ness, will also have high risk of getting lost asrémilt of sampling bias in parent selec-
tion toward more crowded areas, similar to the amalys[2]. To fight against this “un-
fair competition” among highly evolved individuals and naxplorers”, there must be
some mechanism to protect new explorers. This is eethiito some extent by widely
used approaches such as fitness sharing and crowding. Hpusivng horizontal expan-
sion in the genetic space, these techniques usually guffierthe problem of balancing a



limited population size against a huge number of local @imdifficult multi-modal
problems.

Another perspective on premature convergence can ha@ttay examining building
block concepts. The evolution process is widely seea asocess in which different
building blocks become co-adapted to achieve higher and rhiighess by mixing and
mutation. The higher the fitness of an individual, ttrergyer the coupling of its sub-
components, and the more difficult to make large modifinabf the highly evolved
individual without destroying the co-adaptation relatiopsido the exploratory capabil-
ity decreases with increasing fithess of the populatfiois. similar to the Cambrian ex-
plosion in the evolution of living organisms, during whittost existing species (body
plan innovations) were created. However, by allocptifi the search effort to highly
evolved individuals, without control, conventional EAsentially discard the low-fitness
evolution stages after limited mixing experiments, and #mesessentially convergent
algorithms.

NSGA-II, with its controlled elitism [3], is one dfi¢ first algorithms that pays special
attention to dominated inferior individuals. However,ilehderived from the conven-
tional EA framework, the improved NSGA-II still suffefr®m the tendency that all indi-
viduals in the fronts are moving toward the best yatadisred regions of the objective
space, based on limited mixing experiments, and the com{zoaea increasingly co-
adapted to each other (Fig. 1). As the result, the explgragpability of the population
is gradually lost and premature convergence occurs. Ttrédtsn of individuals to the
relatively diverse fronts is insufficient to avoidghiind of premature convergence.

Based on the analysis above, it turns out to be impbttamaintain intermediate in-
dividuals and to make the building block mixing process occatl dithess levels. This
naturally provides a mechanism to ensure fair competéiod protects “explorer” indi-
viduals. At the same time, to reduce the large populatenrsquirement [7] for diffi-
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Fig. 1. The population of NSGA-Il moves in clusters leaving théahlbw objective value
space and converging to the promising space. Even the maintefianpeedefined propor-
tion of population into all fronts, but in the whole these frartsconverging to local areas,
thus making it incapable to maintain the explorative capabilitizé long rur



cult problems, it is desirable to continuously introdumedom individuals into the low-

est fitness levels to provide the required building blockther than depending on a
large initial population to identify them, as is donemessy GA [8]. This suggests the
assembly line structure of the subpopulations in the fi&@Gework proposed in [9]. The
HEMO framework is thus an extension of HFC to multieckive optimization, incorpo-

rating ideas from SPEA, PESA and the improved NSGA-II.

2.3 Combining Ideasin SPEA, PESA, and the Improved NSGA-I|

The different performances of SPEA, PESA and NSGAvHrdlifferent test functions
reflect the unique, positive features of each approacBM® will attempt to capture
some features of each of these. Specifically, thentemance of an external Pareto ar-
chive and the breeding population first proposed in SPEAi§l&hployed in the HEMO
framework, but extended so that both the Pareto ar@amdearchives of intermediate
individuals are maintained. The elitism in the Paretmtf update is supported by low-
level HFC archives, as explained in the next sectiam.density estimation, the grid-
based methods in PESA [1] are used, which are natwatied for the absolute division
of the objective space as required by the HEMO framlewbhis grid-based method is
also demonstrated to have excellent performance intaiaing Pareto front diversity
[11]. The distribution of individuals into all fronts iha improved NSGA-II is extended
to all fitness levels.
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Fig. 2. The assembly line structure of thEEMO Framework. In HEMO, repositories
organized in a hierarchy with ascending fitness level (or larét in the objective space
employed in this paper). Each level accommodates individudtginwa certainfitness
range (or belonging to a given rank level) as determined bgdiméssion criteria.
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3 HEMO: Hierarchical Evolutionary M ultiobjective Optimization

Based on the analysis of the fundamental cause of puemednvergence and drawing
ingenious ideas from previous successful MOGAs, we propesElEMO framework for
difficult multi-objective problems in which the avoidancf premature convergence is of
great concern. Essentially, it is an extension of RAE8hanced with the continuing
search capability of HFC. In addition to the Paretchive and the Pareto workshop
population, a succession of archives for maintainingviddals of different fitness levels
is added to allow mixing of lower- and intermediate-leveailding blocks. A random
individual generator is located at the bottom to feed gametic material into this build-
ing block mixing machine continually. The structure of\H& is illustrated in Fig. 2:

The HEMO algorithm proceeds as follows:

1) Initialization

= Determine the number of levelsLevel) into which to divide the objective space for
each objective dimension. Determine the grid divisign@rid) as in PESA. Note
that nLevel is different froomGrid. The first one is used to organize intermediate
individuals into the hierarchical archives, while tla¢ter is used to estimate the
density of individuals.

= Determine the population sizes of the Pareto arcit# archive and correspond-
ing workshop demes. The distribution of population sizesngnaochives (workshop
demes) can be determined separately or using some gistiddution scheme like
the geometric distribution in (Deb and Goel, 2000).

= Initialize the workshop demes with random individuals. Bhehives are empty at
the beginning.

= Evaluate all individuals and calculate the crowding faofa@ach individual accord-
ing to the hyper-grid approach in PESA.

= Calculate the fitness range of each objective dimen&o all individuals in the
whole population:

[ frins Trmad Where i =0,...0bjDim-1
» Divide the fitness range intaLevel Levels. For all individuals, calculate the objec-
tive ranks for each objective dimensiap,i =0,...0bjDim- 1, f d[0,nLevel -1];
= For each individual, calculate its fithess rank = therage rank over all objective

. ] o § 1 ObjDim-1
dimensions of each individualt = = z r
ObjDim i
= Migrate (move out) individuals in the workshop demes todbreesponding HFC

archives according to their fitness ranks. Then add all non-dominated individu-
als of each workshop deme to the Pareto archive. Tdreréwo cases possible dur-
ing these migrations. If the target archive is full, wi#t replace a selected individ-
ual according to the Pareto archive and HFC archive ugmtateedures described
below; else, we simply add the migrating individual irfite target repository.

2) Loop until meeting stopping criterion



A steady state evolutionary model is used in the HEM@é&work. First,
Compute the breeding probability of each workshop deméeoHC rank levels.
This is calculated as follows:
Popsizeof workshop demeof level |
nLevel -1

> Popsizeof workshopdemeof level k
k=1

These probabilities can instead be dynamically adjustexspective of the workshop
deme sizes. These probabilities determine the altwcafi search effort to each level,
thus determining the greediness of the algorithm.

Decide whether to do Pareto workshop breeding or HFC wogkdeme breeding by
probability pParetoBreed . If setting pParetoBreed =1, then HEMO reduces to an
algorithm similar to PESA. This parameter is used tarob the greediness of the
Pareto search.

pBreedI =

If Pareto workshop breeding is to be done;

Decide whether or not to do crossover according t@ritdbability. Mutate each
gene of the offspring with probabilipGeneMutate.

Select parents from the Pareto archive using tournaseattion based on the
crowding factors of individuals. The less crowded, thearadrance an individual
will get selected. When selecting parents for crossorenutation, the probability
to select only from the Pareto archivepfelectFromPareto. The probability to se-
lect a second parent from the rank 0 HFC Archive igStectFromPareto. When
there is only one individual in the Pareto archive, dbcond parent for crossover is
selected from the highest HFC archive.

Create an offspring (two in crossover) and add it toRteeto workshop deme. If
the Pareto workshop deme is not full, simply add the reewdidate to it; else, trig-
ger thePareto Archive Update Procedure. Then a migration process will move in-
dividuals of each HFC archive to their new qualified HiChives because of the
update of the objective ranges.

If HFC workshop deme breeding is to be done:

Decide at which level (L) breeding will occur accordinghe probabilitypBreedI

Decide whether or not to do crossover according t@ritdbability. Mutate each
gene of the offspring with probabilipGeneMutate.

Select parents from the HFC archive of level L byrt@ament selection based on
the crowding factors. The lower the crowding factog thgher the probability to
be selected. If there is only one parent in the cufiC archive, then the second
parent will be selected from the next lower archive.

Create an offspring (two in crossover) and add it towoekshop deme. If the
workshop deme is not full, simply add to the end; elsggér theHFC Archive
Update Procedure and thePar eto Ar chive Update Procedure.

With low probabilitypRandomimport, update perRandominpercent of the indi-
viduals of the lowest HFC archive with random individuals



Par eto Archive Update Procedure ()

= Screen out the non-dominated individuals in the workshopdem

= Update the objective ranges of the whole population thighnon-dominated individu-
als.

= Recalculate the crowding factors of all individuals o teelected non-dominated
individuals and the individuals in the Pareto archive.

= Update the Pareto archive with the selected non-doedniatlividuals. If the Pareto
archive is full, truncate it by removing individuals whiigher crowding factors.

= Empty the Pareto workshop deme.

HFC Archive Update Procedure ()

= Update the objective ranges of the whole population acala@ate the fitness ranks
of all individuals in the workshop demes.

= Migrate individuals in the current HFC archives intoitherresponding new levels.
If the target HFC archive is full, replace an individsalected by tournament selec-
tion. The more offspring an individual produces, the higherprobability it will be
replaced.

= Update the HFC archives with the individuals in the woedgsdeme. If the target
HFC archive is full, replace an individual selected hym@ament selection. The big-
ger the crowding factor is, the higher probability itl\wave to be replaced. Note that
only higher archives are updated with the current worksleope (uni-directional mi-
gration policy)

4  Experimentsand Results

In this section, two test functions are selected toafestrate the exploratory capability of
HEMO to avoid premature convergence. Here, HEMO is oalgpared to PESA, since
HEMO is most closely derived from PESA.

1) Multi-objective Rastrigin’s problem (ZDT4)

Minimize f,(X) = X,
Minimize f,(x) = g(x)[l—,/xll a(x)]
9(x) = 91+ 1%, [x? ~ 10 cos(4n, )]
x, 0[0,1], x O[-5,5],i = 2,...,10.

2) Multiobjective Griewangk Problem (GWK)
GWK problem is constructed by replacing g (x) in 1) withe@angk’s function, where

ZDT4

99 =2+ 1 14000-1%, cos{, i )0 01

where  x O[512,511)i = 2,...,10

Fig. 3 illustrates the distribution of individuals of HEMiDring the evolutionary proc-



ess. It is clear that HEMO works by trying to expand itithviduals in its repositories
evenly across the objective space, rather than iiyecging to the early-discovered high-
fithess areas. This provides the necessary fitneskegitafor new optima to emerge in a

Distribution of Individuals of repositories of HEMO after 1000 evaluations
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Fig. 3. Distribution of individuals over the objective space of GWKHEMO after 1001
evaluations. Compared with Fig. 1. of NSGA-II, the diffexe is that the archive popula-
tion of NSGA-Il is drifting and has the risk of convergingatdocal area. HEM@as les
tendency to converge, since it maintains representativeidodie at many levels ithe
objective function space and continuously introduces new genet&siatathusproviding
the fitness gradient for new optima emerge in a bottom-yp wa

bottom-up way, from the bottom level HFC archive ammkshop subpopulations.

The robustness of PESA and that of HEMO are compareddyining the relationship
of performance and the mutation rates applied to ggehdouble gene after crossover.
We use the statistical comparison method of [1] to complae Pareto fronts obtained
with different mutation rates by PESA and HEMO (Tabje Cells in the upper right
triangle of the table hold the comparison results dexdifit mutation rates for HEMO,
while the lower left (shaded cells) are for PESA. Ting entry in each cell represents
the percentage of Pareto front solutions obtained thighrow's mutation rate that are
non-dominated, with 95% confidence, by the solutionsioethwith the column’s muta-
tion rate. The second entry in each cell, similagshyows the percentage of Pareto front
solutions obtained with the column’s mutation rate wwat non-dominated, with 95%
confidence, by the solutions obtained with the rowigation rate. From [3], we know
that for test function ZDT4, NSGA-II fails to find ehtrue Pareto front. This is also the
case for PESA, as illustrated in the first column.SREvithout mutation is worse than
any PESA configuration with mutation. It is also suggesthat for PESA, the perform-
ance varies greatly with different mutation rates,j@ghg best performance here with a
mutation rate of 0.12. In contrast, HEMO is more rolmy&r mutation rates. The per-



formance difference with no mutation is not much dé#ferfrom that with mutation rate
0.16.

We also compared the best performance of PESA (mutaditen0.12) with that of
HEMO (mutation rate 0.16) for the same number (10,000)aifiations (Table 2) . For
ZDT4, the Pareto front found by HEMO was much bettantRESA found. In the case
of GWK, HEMO had limited advantage over PESA. The readsothat the statistical
comparison procedure used here [6,1] compares the merged fPané$ found during
20 runs. PESA with different random seeds may converdgféoent points in the objec-

Mutation 0.00 0.04 0.08 0.12 _0.16
Rate
0.00 99 100 99.5 100 99.7 100 97.5 100
0.04 | 100 50 99.8 100 99.9 100 0.5 100
0.8 100 7.3 | 100 99.7 100 100 2.4 99.7
0.12 | 100 3.2 | 100 50.0 | 100 70.6 2.4 99.9
0.16 | 100 7.3 | 100 50.1 | 98.7 100 | 100 100

Table 1. Comparison of the robustness of PESA (in shaded eglts HEMO with test
function ZDT4. First entry in each cell is percentafieadutions obtained with row’s
mutation rate that are not dominated by those obtaivitd the column’s mutation
rate, and vice versa for the second entry. PESAbeareen to depend strongly on
mutation to maintain its exploratory capability. Itviery sensitive to the mutation rate,
for which the optimal value is hard to know in advarldEMO is much less sensitive
to the mutation rate, since it doesn’t depend on mutatiamaintain the explorative

tive space, which on the whole comprise a good Paretd. fHowever, PESA is a poor
opportunist in the sense that for both the ZDT4 and GWiKtions, PESA converges to
only one or two Pareto solutions in 6 or 7 runs oftal tof 20. In contrast, HEMO always
obtains diversified solutions in the Pareto archive.

Test Function ZDT4 GWK
PESA HEMO PESA HEMO
% Non-Dominated Paretg 0.3% 100% 47.3% 53.7%
Solutions in 20-Run Ensemt by HEMO | by PESA | by HEMO | by PESA
ble
Premature Convergence 6/20 0/20 7120 0/20
Frequency

Table 2. Opportunistic PESA and robust HEMO. HEMO obtains a much bB#testo front
for ZDT4 and a small advantage for GWK. However, foheadependent run, the frequency
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5 Conclusonsand Future Work

Current MOEAs still suffer from their convergent natimberited from the conven-
tional EA framework. The loss of population diversityrtsiout to be only a symptom of



the phenomenon of premature convergence. Maintenaneaptdratory capability is
central to ensuring sustainable evolutionary searchew evolutionary multi-objective
framework named HEMO is introduced, featuring: a hieriaatlorganization of reposi-
tories of individuals of different fitness levels (defthas the composite objective ranks in
the divided objective space), the continual introductbrraw genetic material at the
bottom evolutionary level, and hyper-grid-based denstiynasion. Two experiments are
reported to show the sustainable search capabilitfgdi®, demonstrated along with its
robustness over a variety of mutation rates, as cadpr PESA. The paradigmatic
transition in handling premature convergence from HEBtOimstead of trying to escape
local optima from within converged, high-fitness populasiothe continuing EA frame-
work (as represented, for example, by HFC and HEMO lergi)re the opportunity for
new optima to emerge from the bottom up, enabled byidr@rchical organization of
individuals by fitness.

By combining features from PESA and SPEA and extendiaddéms in the NSGA-II
with controlled elitism, and including the HFC organiaaf HEMO is expected to be
well suited for difficult multi-modal real-world problems which premature conver-
gence is of great concern. We also expect that HEMChwiespecially advantageous in
multi-objective genetic programming, where the highly mmlbdal and discrete fitness
landscape often makes modern MOEAs such as PESA fadriyerging prematurely to
a local Pareto front. It is interesting to sort M®EAs by their capabilities to handle
premature convergence. From the lowest to highest,awe RESA> SPEA2-> NSGA-

Il > NSGA-II with controlled elitism—> HEMO, each improving the previous one by
paying more attention to the non-inferior dominatediallials. However, HEMO dif-
fers from all the others in its continuing searchunatwithout premature convergence,
while the others are all based on the traditiomaiyergent EA framework.

As a generic framework, HEMO is easily applicable teeotmodern MOEASs such as
SPEA-2 and NSGA-Il. To improve running efficiency, atéetdensity estimation
method is needed. The scheme for organizing individualsabl levels can also be
improved. In addition, to distribute the individuals of tiepositories more evenly in the
objective space, the HFC archive update scheme neetierfugfinement. Especially,
extensive comparative experiments with NSGA-II with tcolted elitism and other
MOEAs are required to fully demonstrate the potentidd©MO.
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