A Genetic Algorithm Approach to
Compaction, Bin Packing, and Nesting
Problems

© Erik D. GoodmanAlexander Y. Tetelbaupand Victor M. Kureichik
1994, Michigan State University

July 12, 1994
All Rights Reserved

Erik D. GoodmanProfessor and Director
A. H. Case Center for Computer-Aided
Engineering and Manufacturing
Director, MSU Manufacturing Research Consortium
Professor, Electrical Engineering, Mechanical Engineering
College of Engineering
Michigan State University

Alexander Y. TetelbaunPresident and Professor
International Solomon University (Kiev, Ukraine)
Adjunct Professor, Electrical Engineering
College of Engineering
Michigan State University

Victor M. Kureichik Professor
Taganrog State University of Radio-Engineering (Russia)
Visiting Professor, Electrical Engineering
College of Engineering
Michigan State University

TECHNICAL REPORT # 940702
CASE CENTER FOR COMPUTER-AIDED
ENGINEERING AND MANUFACTURING

MICHIGAN STATE UNIVERSITY

TABLE OF CONTENTS

1. INTRODUCTION . .o e e e e e e e e 1
1.1. Report OVEIVIEW oot e e e e e e e 1

1.2. Research Tools and Validation 4

2. BACKGROUND . . . e 6
2.1. Introduction to Layout Compaction. 6

2.2. Basic Definitions and Taxonomy of Compaction. 7

2.3. Algorithms for Compaction. 8

2.3.1. Constraint-graph 1-D Compaction Algorithms 8

2.3.2. Two-dimensional compaction (2-D compaction). 12

2.3.3. Constraint-graph hierarchical compaction. 13

2.3.4. Wire length minimization [40,41]. 14

2.4. Layout Approaches Based on Genetic Algorithms.. 15

2.5. Bin Packing, Nesting and Compaction Using Genetic Algorithms. 17

251. 1-DBinPacking. 17

2.5.2. 2-D Bin Packingand Nesting 23
253.3-DBinPacking. 30

2.5.4. Compaction 32

2.6. CONCIUSIONS. 35

3. PROJECT DESCRIPTIONo e e e e e e e e 53
3.1. Project Statement 53

3.2. Goals Statement 53

3.3. The Approach 54

3.3.1. The Representatian, 54

3.3.2. The Genetic Operators.ttt e 56

3.3.3. The Fitness Functian 58

3.3.4. The Parallel GA Architecture. 58

3.4. Sequence of Problem Refinement. 60

3.5. Contribution and Impact. 62

4. BIBLIOGRAPHY . . 63

1. INTRODUCTION

This technical report is prepared tecord the preliminary work carried out in beginning
aresearclproject on the solution of a group of related problems by means of Genetic Algorithms
(GA’s). These problemmclude integrated circuit layout compaction, bin packing, and nesting.
The principal problem is compaction, with the others serving to illuminate and guide the
compactionwork, as well apossibly receiving benefits from new tools developed. Efficient and
near-optimal solution of the compaction problem will enhance the linkage between symbolic level
modelingof the layout and the mask level design of hierarchical (fragment-based), ultra-fast, low-
power analog and logic circuits. The research goals are to develop new methodologies,
abstractionsand theorythat lead to more efficiently defined and utilized Computer-Aided Design
(CAD) algorithms and tools for compaction, bin packing and nesfligese new methodologies
will incorporate important improvements in the handling of the physical, technological, and
optimizatian aspects of compaction. More effective solution of the bin packing and nesting
problemscan help to solve the compaction problemwa$i as being valuable in their own right
for many practical problems. This will be accomplished by defining a new approachusethe
of Genetic Algorithms (GAs)--for the compaction, bin packing, and nesting problems.

The research will concentrate mostly &we épplication area of high-speed, low-power
analogand digital circuits with clock rates up to 20 GHz. In many applications in this high
perfamance area, dramatically reduced chip area and signal delays are important design
requiremats. The technology area of interest is multi-chip modules (MCM) based on current
or advanced silicon an@GaAs technologies [1]. These technologies have the potential to deliver
improvementsin power management, low voltage operation, low crosstalk interconnects, and
clock frequencies. ThEAD area of concentration deals with the compaction, bin pagkand
nesting prdblems and the solving of them based on GAs. These algorithms, using simple
encoding and recombinationechanisms, display complicated behavior, and they turned out to
be useful in solving some extremely difficult problems.

1.1. Report Overview

The rapid design of VLSI systems plays an important nolthe progress of science and
technology. In general, several important problems can be described in VLSI CAD systems.
They are typically design specification, functional design, logiesign, circuit design, physical
design,and fabrication (technology designjo link these problems, we must perform functional
and logical simulation, circuit analysis, extian and verification. Physical design automation
of VLSI systems consists of six major problems. They are partitioning, placement, assignment
and floorplanning, routing, symbolic layout and compaction, and verification.

Traditioral solution of most of the VLSI physical design problems is carried out by
iterative methods [2,3]. These methods assume successive improvement of an initial variant,
which is obtained by one of the constructive algorithms thrdoghl replacement of elements.
However,these methods have a serious fault -- their use of a single variant of the initial solution.

2

Besideswhen a satisfactory approximaelution is obtained by the constructive algorithms, the
iterative algorithms stop at a local optimal solutions which could not be improved by further
iterative steps of the same process. One way to improve the quality of satuteomcorporate

new methodologies into CAD systems. In this work, we will develop and ag@igtic
algorithms (GA’s), which have recently received widespread attention.

In 1975, J. Holland [4] described a methodology for studying natural adaptive systems
and designing artificial adaptive systems. It is now frequarggd as an optimization method,
basedon andogy to the process of natural selection in biology. The biological basis for the
adaptationprocess is evolution from one generation to the next, based on elimination of weak
elements and retention of stronger elementsufVival the fittest” -- those with the best
performancan the current environment). Of course, over the longer term, it is not the strong
individualsthemselves which ultimately survive, but ratbéspring related to them genetically
in proporton to their reproductive fithess or success at reproduction. The searching of this
representation space is performed using so-called "genetic algorithms" [4-6].

GAs are now widely recognized as an effectearch paradigm in artificial intelligence,
imageprocessing, job scheduling, pattern recognition and many other areas [4-6], particularly as
a mehod for gaining relatively good solutions to NP-hard optimization problems of high
dimensionality. A GA maintains a population of strings (chromosomes) éhabde candidate
solutionsto a problem. These strings are the analog of chromosomes in natural evolution. A
fitnessfunction defines the quality of each solutiohhe GA chooses parent organisms from the
population in such a way that the more fit organisms are more likely to be chosen. It applies
operatorsto generate offspring from the parents. The operators are often loosely modeled on
biological genetic processes, however they are only very crude abstractions of the processes
known and understood to be significant in natural evolution. Most commselgt operators are
mutation, which randomly makes a local modification in a chromosome cevsdover, which
combinesgenetic material from two parents. There are many other operatorassugarsion,
translocation, segregation, duplication, etc, which are sometimes, but nasually, used in GA’s
applied to optimization tasks. After performing these operations on individuals selected for
reproduction, the GA selects current population members, often those with lower fahess v
to be replaced byhe new offspring. The more fit members of the population thus propagate and
combine to generate a population with generally increased fitness.

Thereare many design choices in the construction of a genetic algorithm for a particular
problem. On the basis of our previous experience [7-19] and the results of many other
investigationswe have found that GA'san evolve good designs and produce good solutions to
many combinatorial problems. In this wonkie are going to develop a new construction that is
appropriateand effective for solving of theompaction problem in VLSI CAD systems, and bin
packing and nesting probletghich ae similar in many respects to compaction. Compaction
is the translation of a layout designed from a generic technology (such as GdM@Barticular
fabrication technology’s design rulest translates the output of the detailed-routing phase into

3

mask data and has to convert the circuit elements into the appropriate mask elements and
minimize the chip area. The goal is to minimize the area of the layout, while preserving the
designrules and not altering the function of the circuit. This goal gives this process the name
compaction. Compaction changes the geometry of the topological design togeaxismall a
layout aspossible while enforcing the design rules. In this work, we are going to develop a new
design methodology which incorporates some new genetic algorithm ideas that have been
devdoped recently for other problems, plus efficient encoding/decoding methods and useful
heuristic layput strategies. This new methodology will contain significant developments in the
geneticalgorithm approach and provide thasis for efficient suboptimal solution of compaction
problemsand the related bin packing and nesting problems. Our approach is to develop a
hierachical chromosome representation (HCR) and appropriate genetic operators incorporating
various heuristics, and combine them with our "injection island” GA architecture (iiGA).

In this work we investigate the HCR for the layout compaction and bin gapkablems. This
representidon will be designed to preserve building blocks in chromosomes, and the encoding
schemewill make genes represent groups. The rationale igritibe problem being considered,

"it is the groups of elements and their location which are the meaningful building blocks, i.e. the
smallestpiece of a solution which can convey information on the expected gofathyg solution

they are part of. This is crucial; indedlie very idea behind the GA paradigm is to perform an
explordion of the search space, so that promising regions are identified, together with an
exploitationof the informationthus gathered, by an increased search effort in those regions. If,
on the cotrary, the encoding scheme does not allow the building blocks to be exploited (i.e.
transmited from parents to offspring, thus allowing a continuous search in their surroundings)
and simultaneously to serve as estimators of quality of the regions of the search space they
occupy,then theGA strategy inevitably fails and the algorithm performs in fact little more than

a random search or naive evolution" [20].

Eachgroup of elements (subgroups) is a piece of a layout -- elements and connections
in some aredor bin, for the bin packing problem). At the beginning, when we are given with
someinitial layout to be compact, each group contains only one element. During the GA process
some groups are merged in a new marge group (of a more higher hierarchical level). It is
importantthat all the GA operations noghould work not with elements but rather with groups.

For the proposed representation, we can use as the decoding mechanism one of the existing
silicon compilers [2], or at least the philosophy of this approach. The silicon compiler uses a
similar representation of the circuit and finds coordinates for each element (group) and each
connectionbetween elements (groups). During this compilation, at each stepr twore groups

are mergedinto one new group, with simultaneous determination of relative coordinates of
elementsand connections within the group formed. Finally, all groups are margedne, which
represents the whole layout.

The formulation of the compaction problemlte solved is also to be refined, to take into
accountan additional very important criterion -- circuit performance. The standard compaction
problemsare one-dimensional (1-D) and two-dimensional (2-D) compaction. The bin packing
problemsinclude one-dimensional (1-D), two-dimensional (2-D), and three-dimeng&@yl bin

4

packing. Nesting problems are usually 2-D (blank nesting, optimal nesting, or optimal cutting
problems).

In the 1-Dbin packing problem, the goal is to minimize the number of bins that contain
a gven set of weights, subject to a limitation of the total weight each bin can contain [21-24].
In the 2-D bn packing problem, the goal is to minimize the area of a single orthogonal bin by
packing arbitrary-dimensional rectangular boxes into it [25]. Overlapping of features is not
allowed, but there are no constta on diversity or grouping. In the 3-D bin packing problem,
the goal is © minimize the volume of a single orthogonal 3-D bin containing arbitrary
dimensional 3-D boxes into it [22,26]. In the 2-D nesting problem, the goal is to maximaize
number of arbitrary-shaped elements embedded into a single orthogdr{al7kao]. It is often
allowed to turn the elements during the process.

Our methodology is expected to produce good solutions more efficiently than other
techniques.This isvery important, because the problems are NP-hard. For example, reasonable
approxmation algorithms for the bin packing problem can only guarantee to be within 22% of
optimal [25]. Our algorithm will first initialize a population of chromosomes in which each
chromosomeaepresents the layout (compaction, bin packing, or nesting) as a HCR. For this
representaon, it is possible to develop a modified form of crossover, inversion, translocation,
and some other operators not previously applied to this class of problems. The decoding
algorithm, based ora silicon compiler, takes any chromosome and forms a legal layout (packing).
We expect that our algorithm will advance the state of the art in making gepetators robust
with regard to quantity of data, variation in dimensionba{es, and variation in the aspect ratio
of the bin.

In the 2- and 3-D problems, we initialize a population of chromosomes (solutions) that
canbe induced by the initial symbollayout and in this way decrease incredibly the number of
possble initial chromosomes. Our algorithm evolves these populations of individuals. Each
individual is a string of genes representing some group of elements or subgroups and the
correspoding layout that can be obtained after the decoding procedure. New individuals are
producedby a stochastic mix of the modification of classic genetic operators: crossover and
mutation, specialized for solving hierarchical problems, and some other genetic operations
(inversion, translocation, etc.). We propose to explore several alternative heuristic
operator/selectiostrategies, including ones wall "random with pressure” and "random-direct”
selection. This will introduce less selection-induced variability. These algorithms will be run
using the parallel architectures described below, as already developed by our group.

1.2. Research Tools and Validation
Theseideas and objectives will be investigated in the framework of existing commercially

available and public domain tools, specifically, Mentor Graphics tools for design, and the
GALOPPS("Genetic ALgorithm Optimized for Portability and Parallelism” System) (a highly

5

a very flexible and portable GA system with roots in Goldberg’'s SGA, but totally rewritten)

alreadydevebped by one of the authors and distributed to collaborators in GA research in 10

universities around the world. The use of the Mentor Graphics gackdl be a useful tie into

current CAD technology and is viewed as an essential tool to study the compaction.
Benchmarkproblems will be assembled for validation of the methodology developed.

This set of benchmark problems will corfrem the literature, from random generation according

to realistic characteristics, and from real chips, and will be used for comparisan roethods

with existing compaction techniques. Several possible validation paradigms are referenced in

Section2. Specific details of the tasks and methodology whichbeilused to achieve the goals

of this research are provided in Sections 2 and 3 of this proposal.

2. BACKGROUND

2.1. Introduction to Layout Compaction

The layout designer is driven by two conflicting demands. Theiéirsi find the layout
with an area as small as possible, in order to minimize manufacturingntbstaximize circuit
performance. The second is to create the layout quickly in order to minimize design time and
cost. The designer usually develops the layout during two major layout phases [2,31,32]:

1. Topological design, after which the relative placement of components and wires are
defined.

2. Geometrical design, after which the geometrical (physical) positions of all the layout
elements are defined.

The designer uses different design methodologies to solve the problems of these two
phases. Symbolic layout and compaction are two closely related design methodologies that
encouragethe separation of topological design and geometrical design and help to automate
geometrical design [2].

Symbolic layout allows the topologicdksigner to work with the transistors, wires, and
cells as primitives, rather than manipulating the individual polygons used in fabrication. A
symbolic layout can be drawn asteck diagram, which uses linsegments and components as
symbols, or as a layout display with wires and devices drawn as rectangles similar or identical
to thoseused in the layout. The stick diagram may clarify the cell topology, while the layout
display gives the designer a feel for the relative sizes of layout elements.

The translaton of the output of the detailed-routing phase into mask data must convert
the circuit eements into the appropriateask elements . It should ensure that all design rules
are met, while simultaneously minimizing the layowgaar This last goal gives this process the
namecompaction [2,3]. Compaction changdélse geometry of the topological design to produce
a small layout while enforcing the design rules.

Compactors speed layout design by automating geometric design. The designer gives the
compacto a preliminary layout. The compactor moves components and wires in the plane to
optimize the layout (the first goal) and to correct it in accordance with the design rules (the
secondgoal). The compactor usually moves subcells only irpliaee, preserving the designer’s
topolagy for the cell. The designer can therefore have a great deal of control over the layout
without performing the work required to turns&etch of a layout into a correct, space-optimized
design [33].

Compaction performs a translation from the graph domain into mask geometry.
Compactionis more than just aoptimization problem. Compaction is quite a difficult problem
not only from a combinatorial, biatlso from a systems point of view. Advanced compactors aim
at separating combinatorial and technological isssemuch as possible. Compaction algorithms
use the information from the desigme database to compute the mask features. The structure
of information that the compaction algorithm has to extract fiteendesign-rule database can be
guite complicated. It involves not only simple numerical parameters, such as minimum distances
betweenfeatures on different masks, but also connectinityrmation and electrical information.

7

Most of the steps in the compactipnocess are made much simpler by working with a symbolic
descripton of the layout. Combining compaction with symbolic layout creates advantages for
the computer-aided design developer as well.

2.2. Basic Definitions and Taxonomy of Compaction
Compaction algorithms may be classified along two basic axes, A and B [3,31,32]:
A describes how components move during compaction;
B covers the algorithms used to position the components.
Algorithms from A can be divided into the following groups.

A.l. One-dimensional (1-D) compaction. In 1-D compaction, only the, say, X
coordinatesof the mask features are changed. This kind of compaction is also galled
compaction (y compaction is defined analogously). The goal is to minimize the width of the
layout, while preserving the design rules and not altering the function of the circuit.

So, in 1-D compction, components are moved only in the x direction or only in the y
direction. Most stepof 1-D compaction can be done efficiently. In fact, they can be done with
almostlinear-time algorithms [3,34] A few versions of 1-D compaction are NP-hard [2,31,35].

A.2. Two-dimensional (2-D) compaction. In 2-D compaction, both x and y coordinates
can be changed suttaneouslyin order to minimize area, i.e. in 2-D compaction, a single step
can move acomponent in both x and y. In 1-D compaction, the cell is alternatehpacted
in X any y, while in2-D compaction components are seled¢tedhove as required to improve the
layout.

Most versions of 2-Dcompaction are NP-hard [34,36]. The difficulty of 2-D compaction
lies in determining how théwo dimensions of the layout must interact to minimize the area. To
circumwent the intrinsic complexity of this question, some heuristic are used to decide locally
how the inteaction is to take place [31-33]. These heuristics are sometimes referred to as
1.5-dimensional compaction [3,35].

Algorithms from B can be divided into the following two major types (groups)
[2,3,31,32].

B.1.Constraint-graph algorithms. The constraint graph algorithm descrities required
connectionsand separation rules as linear inequalities, which can in turn be modeled as a
weighted, directed graph [36]. The constraint graph is used to find new positions for the
components, and the result is applied back to the layout.

8

B.2. Virtual grid algorithms. The virtual grid algorithm finds the subcell positions by
consideringthe layout to be drawn on a grid; it moves all components on a grid line together so
that adjecent virtual grid lines are as close as possible while satisfying all required separations
between the symbols on the grid.

Modern designs are modularized hierarchically. An example is the bottom level of the
hierarchy. Optimizing leaf cell layout requires awareness of many interacting constraints and
comgex cost functions. Traditionally, this area of design has been left to human experts.
Hierarchical compaction works on cells that are constructed from other @dlsvell as primitive
layou symbols [37,38]. Any of these techniques can be made hierarchical by applying the
compactionalgorithm toa leaf cell and then using the compacted cell in larger cell. Hierarchical
compaction is also calledell assembly. A variety of hierarchical compaction algorithms have
been deeloped for both constraint-graph algorithm and virtual grid algorithm compaction [39-
41].

2.3. Algorithms for Compaction.

The general procedure in compacting a cell is shown in Fig. 1 [2,3,31-35]. Each
iteration through the loop is a compaction step. First, the layout is analyzed to determine the
spacing rules that must be obeyed. Then the layout is compacted to satisfy those constraints.
Finally, a wire length minimization algorithm is applied to the compactor’s solution to adjust
the positions of non-critical wires in the layout.

Compaction step

Fig. 1. The compaction process.

2.3.1. Constraint-graph 1-D Compaction Algorithms

There are two basic approaches to the constraint-graph 1-D compaction algorithms:
compression ridges and graph-based compaction.

Compression-ridge method. This method was pioneered by Akers [42]. In this

9

approach, a region of empty space is identified in the geometric layout, which separates the
layout into a left and a right part. Such a region is subsequently removed by translation of

the right part of the layout to the left by as much as the spacing constraints will allow. This
step is repeated until no more compression ridges are found.

DisadvantagesThis method progresses from the top to the bottom of the layout. This
progression amounts to a search through the layout with backtracking (if the compression-
ridge method cannot progress further) and thus is computationally complex. Furthermore, it
finds only horizontally convex compression ridges.

The key to finding compression ridges is the representation of the empty space in the
layout by a directed edge-weighted graph, ttheegraph [3,42]. The tile graph is constructed
as follows. First the horizontal segments of the contours of the features are extended through
the adjacent regions of empty space. This process divides the empty space between the
features into rectangular tiles. The tile graph G=(V,E) has a vertex for each tile. Special
vertices s and t represent the top and bottom sides of the layout. Vertices representing
vertically adjacent tiles are connected with anti-paralleled edges. Thus each anti-paralleled
edge pair corresponds to a horizontal segment separating two tiles. The edges are weighted
as follows: An edge e pointing downward receives the weight c(e), which is the width of the
corresponding tile. An edge pointing upward receives the weight c(e)=inf.

The ordered 1-D compaction can be solved as follows [3,32]:

Step 1: Find a maximum flow from s to t in G.

Step 2: For all edges e from E that point downward, compress the tile corresponding

to e by the amount indicated by the flow along e.

It was shown [3] that the preceding algorithm solves the ordered 1-D compaction with
d(1,1)=0, and p=id and without grouping constraints, as long as the initial layout is legal. In
[3] they restrict their attention to compression ridges that correspond to paths in the tile

graph. They give an O(n log n) time algorithm for finding such a ridge that allows for the
largest decrease in layout width. However, before compaction is complete, many compression
ridge may have to be found. The advantages of the compression-ridge method are that the
compaction can be broken up into small steps and that it is possible to interleave compaction
in both dimensions. This feature is especially important in an environment in which
compaction is done interactively, step by step. The Akers compression-ridge method can be
applied in a virtual grid setting.

Graph-based compaction. This method turns compaction into a system of linear
inequalities that is subsequently solved using shortest-path methods [31,32,43,44]. The
compactor’s job is to recognize and enforce spacing rules while minimizing area. Spacing
rules can be written as constraints (€@anstraint-Graph Model).

The positions of the components, represented as variables in the inequalities, are
represented by vertices in the graph. Negative weights on the graph edges indicate that a
component is allowed to be to the left of another: C can be at least -d units to the right of W
(or d units to the left), and vice versa. The edges representing these constraints form a cycle
in which the sum of the weights around the cycle is non-positive.

10

The graph represents a 1-D compaction because all the variables in the constraints
represent positions in the same dimension. The graph includes two artificial vertices, L and
U, which represent the lowest and highest positions in the cell, respectively. L is a source of
the constraint graph, and U is a sink of the graph. Values assigned to the vertices represent
positions of the cells in the dimension of compaction. The minimubh distance is
determined by the longest path of constraints from L to U. One can translate the longest path
problem into a shortest path problem by negating the weights of the edges. One can view
1-D compaction as Anear programming problem:

MINIMIZE U-L

subject to -L+A®
-L+B»®
-A+BH#A
etc.

The objective function of the linear program is U-L, the distance between the lower
and upper edges of the graph. The simplex algorithm can perform such a search. The
average number of iterations required for the simplex method is very nearly linear in the
number of constraints.

Constraint-graph leaf cell compaction

THE SHADOWING ALGORITHM [2,31-33,44,45]. The shadowing algorithm examines
the positions of cellso determine what constraints are redundant. As shown in Fig.7, one can
imagine a regon that contains cells B,C,D,... that must be constrained against cell A in x as
falling under a shadow cast from A.

The shadow’s maximum height is the height of A extended by the distance in each
direction. If the shadow falls on a cell, that cell must be constrained against A; thus, we must
generate a constraint from B, C and D to A.

The shadowing algorithm describes howgeenerate the constraints on a cell from all the
cells below t or to its left. The algorithm keeps the bounds of the shadow’s left edge in a
shadow"front". The shadow is a list of edges, each of which has a position in the constraint
generatiordimension and an upper and lower bounthe opposite dimension. The shadowing
algarithm starts with the shadow extending from A to the cell’s left edge, then searches from
right to left cells that block portions dii¢ shadow. The function IN SHADOW returns true if
a cell's right edge is in the shadow, whichplies that it must both overlap at least one edge in
shadow-front in yand also be above that edge in x. If the cell is in the shadow, the algorithm
addsa constraint from it to the sink and calls the update shadow procedure to modify the shadow
front so that one edgef the shadow coincides with the left edge of the cell that required it. The
shadowing algorithm moves from left to right.

There are some difficulties in creating a robust implementation of shadowing. Some
componets may move through each other during compaction, and the shadow must not be

11

blocked until all cells that may enter the shadow have been considered.

THE INTERVENING GROUP METHOD [45-47]. This method uses a simple heuristic
to eliminate many, but not all, redundant constraints, by remembering a path through the
constraint graph that provides a lower bound on the size of relevant constraints.

The first function in intervening group method, CONSTRAINED, returns TRUE if the
constraintgraph includes a path of constraints between two cells that satisfies the spacing rule
betwea them. The second procedure in the method, GENERATE CONSTRAINT GRAPH,
considerseachcell from left to right, generating constraints to the i cell from all previously
considereccells 1,...,i-1. The speed with which the set of all constraint paths to a cell can be
tested and updated allows the algorithm to eliminate redundant constraints very quickly.

PERPENDICULAR-PLANE-SWEERLGORITHM (PP shadowinglgorithm) [35,37,48-
53]. The PP shadowing algorithm uses a scan line to pedashadowing analysis. X-dimension
constraints are generated by a vertical line ihawept from left to right across the layout. In
designrule checking, because polygons do not mavey polygons within a fixed distance of
the scan line need be checked, but for compaction the scan line must collect arbitrary distance
elements. Constraints are generated from one element’s right edge to another’s left edge. A
right edge is dded to the edge data structure and is checked to find left edges in the data
structureagainst which it must be constrained. A left edge, because it blocks the shadow cast
by a right edge, causes right edgede removed from the data structure. The one-layer version
of the PP shdowing algorithm has a time complexity of 0(nlog(n)), where n is the number of
rectangles in the layout.

Oncephysical connectivity and separaticonstraints have been generated, the constraint
set must be solved to find the longest path from L to U. An iteratyarithm is usually used
on a constraint graph with cycles. An edge can be used to define an oaethwy vertices it
conrects. All positive-weight edges are forward, as are any negative-weight edges that satisfy
the partial ordering defined bié positive-weight edges; any other edges are backward. In an
iteration, the method first applies acyclic-longest-path to find vertex positions that satisfy the
forward edges, then it updates that solution to also satisfy the backward edges. The algorithm
stopswhena forward update/backward update iteration produces no change in the solution. This
algorithm is of complexity O(ve), but because constraint graphs have reld@vwelgrge strong
components, its average behavior is better.

Virtual grid algorithms

VIRTUAL GRID LEAF CELL COMPACTION [34,39,40,54]. The model simplifies both
constraintgeneratiorand solution. The virtual grid compaction system determines spacing rules
and assign coordinates simultaneously, avoiding the need for an intermediate data structure to
describe the constraints.

Compaction starts by assigning tleét-most virtual grid the mask position 0. The other
virtual grid lines are assigned mask positions in order by looking at the components that have

12

already beemlaced. The most commonly used method to find all the constraints that must be
satisfied is the most recent layers algorithm.

After both x and y compaction, virtual grid compactors use an xy compaction step to
reducecell size. The 1-D compaction model produces a rectangular barrier around a component.
The xy campaction step looks for adjacent components that can be moved closer together and
adjuss the positions of their virtual grid lines. The xy compaction step is usually performed
simutaneouslywith the second x or y compaction, since it must look at the same constraints.
Becaug the virtual grid lines determine how components move, only one x and one y
compaction step are necessary. Further x or y compaction will not reduce the cell size.

SPLIT-GRID COMPACTION [39,41]. This method allows objects onrtual grid line
to move independently, but does not allow connections with steps. Split-grid compaction
producesa layout closer in quality to a constraint-graph algorithm compaction, at the cost of
more CPU time than required for simple virtual grid algorithms.

2.3.2. Two-dimensional compaction (2-D compaction)
2-D compaction is an extension of 1-D constraint-graph compaction. As shown &y Bigh

cells A and B can ave 4 relative positions: B can be above, below, left of, or right of A
[36,55].

B(x)A(X)+c) (right),

B A(QEB(x)*c) (left),
BAB B(y)%A(y)+c) (above),
B A(Y)B(y)+c) (below).
(a) Layout. (b) Constraints.

Fig. 2. 2-D Compaction constraints.

In each case, some spacing rule determines the minimum distance required between them.
The minimum distance is expressed as a lineaquality. Left-of/right-of placement constraints
are expressed as functions of x-dimension variablesabade-below constraints are written in
terms of y-dimension variables.

This formulation is a special case mixed integer linear programming, which works on
linearconstraints and 0/1 decision variables. A simple insight helps us to discover algorithms
for solving these problems -- for any particular setting of decision variables, the selected
constraintform two 1-D constraint graphs, one for x and one for y. Solution algorithms choose
settingsfor the decision variables (in effect selecting the relative locations of cells), solve the

13

resultingl-D compaction to get the cell positions, and evaltreeqguality of the resulting layout.

Kedem and Watanabe [55] used branch-and-bound search to solve a 2-D c@sdtraint
Schlaget al. [36] allow all four possible placements of component pairs. Their algorithm not
only searches through all possil@empactions of a given planar topology, but also changes the
planartopology -- by moving a componeinbm one side of a wire to the other, for instance. One
simple way to use this algorithm is to assemble 2-D compacted leaf cells using the 1-D
hierarchcal compaction algorithms. The limitation of the algorithm is its high computational
complexity.

2.3.3. Constraint-graph hierarchical compaction

There are two appathes to constraint-graph hierarchical compaction [15,32,36,55-62].
The first treats subcells as fixed, whereas the second allows subcells to stretch during
compaction.

FIXED-CELL HIERARCHICAL COMPACTION. This compaction issed in SPARCS
[2,37]. These programs’ model of subdellthe position of its ports and a protection frame used
to deermine cell-to-cell spacing. The protection frame includes material within the maximum
designrule distance on eadayer; this material determines the subcell's separation requirements.

PITCHMATCHING [63-65]. Pithmatching---stretching cells so they can be connected
by abutment---is simply recompacting the cells with additional ports to be aamhe positions.
Hierarchical compaction with stretchaldells required the compactor to build a more complex
model of a subcell than that required for fixed-cell assembly. The ideal model would contain
information about how the cell’'s contents stretch during catiggra-- how the ports can move
during conpaction -- and information to determine the spacing required between the cell and
other cells.

The port abstraction modéully characterizes the stretching behavior of the cell with a
much smaller constraint graph that includes only the ports as vertices and flexible protection
framethat describes the cells boundary. A pdostraction consists of two constraint graphs, one
for x and one for y. The vertices in eagiaph represent the ports. The edges describe how the
ports can move during compaction. The motion of the ports is determined by the components
andwires in the cell’'s interior. Because cells contain many fewer ports than components and
wires, the port abstraction is a greatly simplified model of the cell.

The abstaction’s constraints are determined by computing a subset of the transitive
closue of the constraint graph. Because the abstraction contains only port vertices, only the
longes path between ports need to be computed. The simplest algorithm for calculating
transitive closure is Floyd’s algorithm [66], which takes €)(steps irrespective the graph’s
sparsenessThe Eic method [67] insures that each pair of components is constrained by either
an x or a y constraint. The longest paths between all pairs of componemigemh the cell
are computed; if their ranges conflict in one dimension, then a constraint athtee dimension

14

is introduced. This method is robust, but costs much more to compute.

Finding the spacing required between two subadlisng hierarchical compaction is much
more complicated than finding the spacing required between primitive symbols, because
componets in the subcell can move during compaction. The port abstraction does not contain
enoughinformation to determine how cell-to-cell spacing changes as cells stretch, so most
systems use worst-case spacing between subcells.

VIRTUAL GRID HIERARCHICAL COMPACTION [68,69]. Most virtual grid systems
perform a simple two-level hierarchical compaction. First, all leaf cells are compacted]lthen
cells are assemblenhto the final design by a pitchmatching algorithm. During pitchmatching,
the mask positions of virtuadrid lines in the cells are adjusted to stretch the cells for abutment.
Stretching subcells during virtual grid hierarchical compaction is best formulated as a simple
constraintproblem. The virtual grid compaction of the subcells determines the minimum
positionsof their pins. The minimum distance of each pin from the base of its subcell can be
written as a separation constraint, and a connection between pife cantten as an equality
constraint. The resulting graph, after merging nodes connected by equality constraints, is acyclic
and can be solved with breadth-first search.

Once the port positions have beennd, it can update the positions of the other virtual
grid lines for the subcells tmaintain the required spacings. The virtual grid model simplifies
the determination of cell-to-cell spacingthe virtual grid allows the compactor to predict how
conponentsalong the boundary will move. The CAD system PANDA [2,68] performs
cell-to-cdl spacing in two passes: first, using worst-case spacing, then pushing cells closer
togeher based on a design rule analysis near the boundaries of abutted cells. CAD
COORDINATOR [2,69] uses constraint-generation algorithms for leaf cell compaction, which
make feasible the compaction very large (10,000) cells.

2.3.4. Wire length minimization [40,41]

The smplest algorithm for wire length minimization works directly on the compaction
constraint graph. First the compaction constraints are augmentedongtraints that maintain
the order of wire endpoints. The augmented graph is solved by repeatedly applying the
minimizationstep. A vertex is chosen that, when moved, will reduce the weighted sum of wire
lengthsin the cell. The wire length minimization algorithendescribed as a linear programming
formulation of the problem, and solves it usingwek programming techniques. Because the
optimum solution to a linear program occurs at the simultaneous solution of two or more
constaints, the wire length need be checked only at the ends of the vertex’s range. When no
vertexcan be moved to reduce total weighted wire lentyih cell’s wire length is minimal. An
algorithmthatperforms grouping and shearing operations to minimize total wire length has been
developed.

INCREMENTAL CELL OPTIMIZATION [32,54,61]. The most incremental cell

15

optimization methods are jog introduction -- adding a degree of freedom to a connection by
changing a wire segment to a z-shaped wire. Let us consider two typical situations for adding
a jog. In both cases, allowing the ends of the wire to move separately allows the components
to move closer together in yAutomatic jog introduction occurs at the start of a compaction step

-- wires are selected for jogging and jogs are added, then constraint generation and solving
proceeds normally [70].

Super-compaction [2,333] introduced methods for analyzing the critical path to find a
small set of jogssufficient to reduce the cell size. Finding a set of jogs that breaks all critical
pathsis equivalent finding a cut-set of the critical pgtiaph. Ciritical path analysis also allows
usto consider geometric reorganizations that break the critical path by nemlisdgo eliminate
separation constraints.

2.4. Layout Approaches Based on Genetic Algorithms

In this poposal, we describe various approaches to physical design of VLSI systems
basedon genetic algorithm methodology, in order to show the utility of the GA approach to
layout design.

Partitioning Problem

Let us define the VLSI partitioning problem as followd/e can represent a VLSI system
as a hypergaph H=(X,E), where X represents the set of nodes and E represents the set of
hyperedges.Let P={P(1),P(2),...,P(l)} be the set of partitions of the H. Let each partition P(i)
contain the elements x(i); that is, P(i))={}(2),...,x(k)} and each x(i) belongs to X. The cost
function is the number of hyperedges (connections) between different partitions P(i). Our task
is to find a partitioning that minimizes the cdghction. Genetic algorithms start with an initial
population of partitions (randomly generated or generated by some constroetived). They
evaluatethis population based on the cost function. Then they select some members of the
populaton and perform genetic operators (crossover, mutation, inversion, translocation and/or
others). Applying GA’s allows one to find better solutions for partitioning problg€ms/2] than
those typically found by other methods.

Placement Problem

The placemeniproblem of standard cells on the VLSI chip is to arrange a given set of
standardcells of common or variable height and width on the chip surface. The placement must
satisfy criteria of routability of the design. Thisusually an objective function which minimizes
a function of the wire lengths. Genetic algorithms for placement usually use the following steps:
initialization of the population, evaluation, selection, and allocation. Some algorithms use so-
called"pressure” techniques. Aftearmation of each generation, they perform local optimization
to find the bessolutions. Such a procedure helps in finding many local optima, and perhaps also

16

the global optimum [73,74].
Floorplanning

The floorplan design problem is to arrange a given set of "flexible" modules (with
undefined shape and pin assigent) in the plane to minimize the chip area and some function
of the wire lengths. In [75], the theory of punctuated equilibria and genetic algorithms are used.
They proposea new structure and new model for coding of VLSI systems, as well as a novel
genetic strategy and some new genetic operators combining local and raadcm I3g means
of which they state that "better" results may be obtained.

Routing

Let us consider two optimization problems, the channel routing problem (CRP) and
detailedrouterproblem (DRP) [2,3,76,77]. The CRP is specified by a given rectangular channel
with two rows of terminals along its top and bottsides. The objective of the channel router
is to assign ach net to a horizontal track (or tracks) in order to minimize the number of such
horizontaltracks. Construction of genetic algorithm for the CRP includes five major steps [76].

1. Select a representation to encode the search space.

2. Determine an appropriate evaluation function and scaling scheme.

3. Determine a selection algorithm.

4. Choose genetic operators.

5. Set control parameters.

A newscheme for selection and some heuristic knowledge-oriented genetic operators combining
local and random search improve the performance of the GA in this application. After each
generationthe algorithm keeps the best of the previous generation and the newly generated
offspring. This process improves chances of finding the optimum routing. Seweesults for

the DRP are also developed in [77].

Symbolic Layout and Compaction

Symiwolic layout and compaction are two closely related design methodologies that
encouragethe separation of topological design and geometrical design and help to automate
geometrtcal design [2,3]. The translation of the output of the detailed-routing phase into mask
data must convert tharcuit elements into the appropriate mask features. At the same time, it
shouldensure that all design rules are met, while minimizingdieut area. In [78], a genetic
algorithm for performing the compaction is described. A population consisting of lists of
constraintsis used with chromosomes differing with respect to the order in which these
constraintsare applied. We will describe this problem and GA’sitfan more details in the next
section.

The GA strategy is a powerful methodology for avoiding premature convergence at local optima.

17

It canbe efficiently used for design of VLSI systems. GA’s are easily parallelized, for increasing
speedin massively parallel or distributed computing environments, including low-bandwidth

networksof high-performance computing elements. Parallel GA’s hold the promise nearly linear
speedup of calculation with the number of processors.

18
2.5. Bin Packing, Nesting and Compaction Using Genetic Algorithms
2.5.1. 1-D Bin Packing
Problemformulation. Given a finiteset of elements E={ge..,e} with associated weights

W={w,,..w,} such that Ow<w*. Partition E into N subsets such that the sum of weights in
each partition is at most w* and that N is the minimum.

Let us first consider the classic traditiomaéthods. In [79] they call an algorithon-line
if the numbers in list lare available one at a time and the algorithm has to assign each number
before the next one becomes available. Let L = (x(1), ... , x(n)) be a given kstl afumbers
in (0, 1), and let BIN(1), BIN(2), ... be an infinite sequence of bins, ehahit capacity. The
BPP is to asign each x(i) to a unique bin, with the sum of numbers in each bin not exceeding
one,such that the total number of biased is minimum. It is shown that any on-line algorithm
S must have r(S) 38/2, where r(S) = S(L)/L*, S(L) is the number of bins used by S, and L*
denotes the minimum number of bins needed.

Commonly Used Heuristics
FIRST-FIT (FF) algorithm (an on-line algorithm).

Given a list L = (x(1), ... , x(n)), the FF assigns x(j) sequentially, for j = 1, 2, ... , n to BIN(i)
with the smallest whose current content does not exceed (1-x(j)). The measure r(FF) = 17/10.
The FF algorihm is an O(n log n)-time algorithm. It is shown in [79] that in generalized,
d-dimensional bin packing, any O(n log n)-time algorithm S must have i{s) >

FIRST-FIT-DECREASING (FFD) algorithm (NOT on-line).

Givena list L = (x(1), ... , x(n)), the FFD first sorts the x(j)’s into decreasing order, and then
performs FF. FFD has a running time O(n log n). r(FFD) = 11/9.

REFINED-FIRST-FIT (RFF) algorithm.

Any element x(j) ina list L will be called an A-piece, B(1)-piece, B(2)-piece, or X-piece if x(j)

is in the interval (1/2, 1]-A, (2/5, 1/2]-B(1}1/3, 2/5]-B(2), or (0, 1/3]-X, respectively. Before
packing,they [79] divide the set of all bins into 4 infinite classes. Ldtam {6, 7, 8, 9} be

a fixed integer. Suppose the first j-1 numbers in list L have been assigned: they process the next
number X(j) according to the rules:

19

a) Put x(j) by FF into a bin in
class 1, if x(j) is an A-piece,
class 2, if x(j) is a B(1)-piece,
class 3, if x(j) $ a B(2)-piece, but not the m(i))th B(2)-piece seen so far for any
integer -1,
class 4, if x(j) is an X-piece.
b) If x(j) is the (m(i))th B(2)-piece seen so far for some integértirey
put x(j) into the first-fit bin containing an A-piece in class 1, if possible, or put
X(j) in a new bin of class 1 otherwise.

RFF runs in O(n log n) time, as it essentially perfs a FF within each class, which takes o(n
log n) time for each x(j). r(RFF) = 5/3.

Article [80] describes two additional heuristics, but with the bin capacity w*=1: Given a list L
=(a(1),...,a(n)) of real numbers in [0, 1], place the elements of L into a minimum nurhloér
bins so that none contains numbers whose sum exceeds 1.

BEST-FIT (BF) algorithm.

Let the bins be indexed as B(1), B(2), ... , with each initially empty. The numbers a(1), a(2), ...
, a(n) will be placed in that order. To place a(i), find l¢eest j such that B(j) is filled to level
b < 1-a(i) and b is as large psssible, and place a(i) in B(j). B(j) is now filled to level b + a(i).

BEST-FIT-DECREASING (BFD) algorithm.
Arrange L = (a(1), a(2), ... , a(n)) into non-increasing order and apply BF to the derived list.

The FF algorithm places each number, in succession, into theifirst thich it fits. The BF
algorithm places each number, in succession, into the most nearly full bin in which it fits. In
[80], they show that neither the Fer the BF algorithms will ever use more than (17/10)L* +

2 bins. They prove that, if L i decreasing order, then neither algorithm will use more than
(11/9)L* + 4 bins.

In [23], the authors describe classical solutions of on-line packing problems, i.e., that pack
itemsas they arrive without any knowledge of future arrivals. Thus, algduithms will assign
the items to bins in order of increasing index, under the single constraint that at each time t there
be no bin that contains "currently active" items whose sizes sum to more than w*FitHFt)
packingis the central algorithm of interest. The ordering for occupied bins is maintained by this
procedure. They generalize the classical one-dimensional bin packing model to include dynamic
arrivals and departures of items over time. In [24], the authors describe two classic

20

approximation algorithms for packing rectangles, calleeki-fit and first-fit shelf algorithms.

Shelf algorithms can pack the rectangles in the order specified by the given list (queue), without
sorting them first. Unlike [23], the sheadfgorithms can pack an infinite list of rectangles such
that for any finite initial segment of the list, theight of the packing is within a constant times

the height of an optimal packing of that segment.

A nature-based stochastic approach as a new approximation algorithm for seviong-packing
problemand as a solution-improving tool for tR&D in its worst cases is proposed in [21]. This
appoachis called the Annealing-Genetic Algorithm (AGA), which incorporates a GA into a
simulatedannealing algorithm (SAA) to improve the performance of the SAA. Both SAA’s and
GA'’s are stochastic optimization techniques based on analogy with natural processes, the former
basedon thermodynamics and the latter based on natural evolution. The major advantages of
thesenature-based algorithms are their broad applicability, flexibility, ease of implementation,
and potential to findhe optimal solutions. Their disadvantages include the following: a SAA
may require a long computatidime in order to converge to the optimal solutions, and the SAA
may easily be trapped into a local optimum. GA'’s are not well suited to rapidly performing
finely-tuned local search and may exhibit premature convergence due to the loss of alleles
required to reach the global optimum.

The main ideas of thigpproach in speeding up SAA are as follows. Instead of just one
startingpoint and one ending point of a Markov chain in SAA, there are many starting points and
ending pointsto construct many search paths. The starting points are selected from the old
generationP(K) based on their fitness values, and the end paiatplaced in P’(K+1) to become
candidatedor the populatiorof the new generation P(K+1). The GA’s P’(K+1) is operated upon
by SAA to obtain the new ending points placed in P(K+1), and these new ending points have
lower average cost than the old ending points in P’(K+1). Findile/new ending points become
the population of the new generation. The important parameters affecting the efficieB@A
are the initial temperature, the total length of the Markov chain, the move generation strategy,
and the frozen condition. Concepts from GA theory are used to control these parameters.

The Annealing-Genetic algorithm (AGA) starts with a randomly generated population
P’(0). Next, the Genetic Operators (GO’s) are applied to produce a new population P(0) by
rejectingthe higher cost offspring so that the average cost of Pi@dghan that of P’(0). Then
the search paths are generated from the points of P(0) at a small value of temperature T(0) until
the first generation P(1) is created. The initial value of the temperature is

T(1) = (the highest cost - the lowest cost)/(0.5 population size).

Starting off with the point of lowest cost in the old generation, a next point is generated from
the curent point by the move generation strategy. It is accepted by the Metropolis criterion
(Pr=exp(-AC/T(K)); AC=the highest cost - lowest cost; T(KMC/InPr; Pr=0.6;
T(K)=-AC/In0.6=2a), the next point not only becomes the cupeintt but also is a member of

the next geneaation. The process is continued until the new population is generated. Finally,
when80% of the population in a certain generation has the same cost as the seltttonthe

21

frozen condition is signalled.

Assume, thiaevery bin has capacity, and that there are n weights in the list 0<g(i)<
for 1<i <n. The sum of tha(i) packed in a bin B(j) is called the content of B(j) and denoted
by W(B(j)). The quantity -W(B(j))] is called the gap of B(j), and is denoteg Gap(j). Then,
Gapf)=y denotes an empty bin, Gap(j) = 0 denotes a full bin, and Gap(j) < 0 is an illegal
packing. Then

Gap(j), if Gap())®
COST(B()) ={
Gap(f)+penalty cost(T(K)), if Gap(j)<O.

Penaltycost increases as the temperature decreases. The assignment vector A[1:n] denotes all
weights to bins

COST(A) = sum(j=1,m) COST(B())).

Thereare twostrategies to be used in an algorithm for generating the next point of the search
pah. The first one is the GREEDY MOVE (GM) and the second is the SWAPPING MOVE
(SM). In a GM, a weight a(i) is randomly selected from the &ay, B(1), which has the largest

gap among # bins. Next, this weight is assigned to another bin, say B(2), in an attempt to
decrease the current numbérbmns needed. If B(2) has enough room for a(i), move a(i) from
B(1) to B(2). In a SM, we randomly choose two weighfiy, a(j) which have been assigned to

bins B(1) and B(2) respectively, and then exchange their roles. In these moves, the change of
costs is calculated by

AC = (COST B(1’) + COST B(2)) - (COST B(1) + COST B(2)).

The three GO’s not only modify thstructure of the population to create new structures, but also
reducethe average cost of the population. Howenwerjllegal packings are allowed. The GOs
are performed in the following steps.

Step 1. Two parents are selected from the population based on their fitness values. Then
the Crossover Operatas applied to produce their two offspring. The offspring
musthave lower costs than the average cost of the old generati@myvise, the
parents continue for the following steps.

Step 2. The reordering ("inversion”) operator is applied to the parent to reorder its
sequenceyielding a new cost. If the new cost is lower than the old one, the
offspring is copied to the next generation; otherwise, the parents continue to the
next operation.

Step 3. The mutation operator is applied éach parent, and the offspring is retained if its

22

costis lower than the cost of thgarent. Finally, the parents are copied to the next
generation.

Thesestepsare repeated again and again until the population of the next generation is
created The AGA has the best average performance among all the algorithms they reviewed
[21]. The AGA can be viewed as a SAA with population-based transition and GO-based
qguastequilibria control, or it can be viewed as a GA with a Boltzman-type selection operator.
It can be shown that the AGA has polynomial time complexity.

In [20], it is formulated in transportation terms: given a set of boxes of different sizes,
how should one pack thewl into containers of a given size in order to use as few containers
as possible. Paper [20] present a gengitouping algorithm for this problem. The problem is
defined as follows: Given a finite set O of numbers (the object sizes) and two constants B (the
bin size) and N (the number of bins), is it possible to "pack" albbjects into N bins, i.e. does
there exist a partition of O into N or fewer subsets, such that the sum of elements frtreny o
subsets does not exceed B?

It is possible to use the number of bins required directly as the cost function to be
minimized, but that is unusual in practice. The authaffered a novel cost function: maximize

f:f: (fill(i)/C)*
= N

with N being the number of bins used, fill(i), the sum of sizes of the objects in bin i, C, the bin
capacityand k, a constant, k > 1. In other words, the objective function to maximize is the
averagepver all bins, of the k-tipower of "bin efficiency”, measuring the exploitation of a bin’s
capacity. The constant k expresses our concentration on the well-filled, "elite" bins in
comparison to the less filled ones; k=2 typically gives good results [20].

Bin packing belongs tthe optimization (grouping) problems in which the aim is to group
members of a set into a small noen of families, in order to optimize a cost function. So bin
packing can clearly be seen to be a grouping problem: the aim is to group the objects into
families (bins) and the cost function f above indeed grows with the(flieand decreases with
the number (explicitly via N, and implicitly via fill) of the families. The classical mutation
operator would be too destructive once the GA begins tthraggood solution of the grouping
prodem. The main reason is that the structure of the simple chromosome (which the above
operators work with) is much too object oriented, instead of being group (i.e. bin) oriented.

Thatis why the authors of [20] hawosen the following encoding scheme: the standard
chromosomeas augmented with a group part, encodimg bins on a one-locus-for-one-bin basis.
For exanple, the chromosomes shown below, which would ordinarily be encoded only as the
partsto the left of the colon (i.e., one locus for each OBJECT) would be expanded to the
following encodings:

23

ADBCEB:
BB:

ECDA and
AAAB B

B
A
with the "group part” (one locus per BIN) written after the colon, indicating that there are a total
of 5 bins in the first example, and two bins in the second.

The additicnal structure is utilized by a strongly restructured crossover operator, called Bin
PackingCrossover (BPCX). The FF heuristierves well as the initial solution-generator for

populationinitialization. Then crossover proceeds as follows: Consider the following group
parts of two chromosomes to cross (recall that there is one locus per bin in the group part):

ABCDEF parent 1
abcd parent 2

First, copies a@ made of the two parents (in order not to destroy the parents) and two
crossing sites are chosen at random in each of them, yielding, for example

A|BCD|EF
ab|cd|

Next, the bins between the crossing sites in the second chrome@semiejected into the
first

AcdBCDEF

Now some of the objects appear twice in the solution and must be thus eliminated.
Supposesomeobjects injected with the bins "c" and "d" also appear in bins C, E and F. The
next step is to eliminate bins C, E, and F, leaving

AcdBD.

The elimination of those three bins, however, most probably eliminated some objects
which were not injected with bins ¢ and d. Those objects are thus currently missing from the
solution. To fix this last problem, apply the FFD heuristic to reinsert them, yielding, say

AcdBD x,

First Fit
Best Fit

24

where x represents one or more bins containing reinserted objects which did not fit into the
previous bins (i.e., those to its left).

The child just constructed indeed inherited important information from both parents,
namelybins A, B and D from the first and c, d from the second. Note, however, that bins A,
B and D might not be exactiye original ones found in the first parent, because the FFD might
have filled them up further with some of the objects reinserted in the last stage of the BPCX.
First Fit Descending (FFD) first sorts the objects in order of decreasing size before applying the
FF strategy. It works much slower than FF, but performs slightly better.

2.5.2. 2-D Bin Packing and Nesting

2-D Bin-Packng . Given a finite set of rectangular boxes Ezx{ee} with associated
sizes W={(x,,,Y1,)-..(X,,¥,)} such that 0x,,y<L*. Place without overlapping all or some of the
boxes from E into the rectangular bin with sizes X>L*, Y>dufch that the relation of the sum
of box areas to the bin area is the maximum.

Smith has looked at the problem of bin packingteaty-dimensional rectangular boxes
into a single orthogonal bin using a GA [25]. The problem is NP-hard. A solution is to
representhe bin packing as lsst of the boxes plus an algorithm for decoding the list into a bin
packing. The list is readily mutatable (flipping boxes), and is amenable to a modified form of
crossover.

The decodingalgorithm takes any list of boxes and forms a legal packing. There are two
decodingalgorithms. The first is called Symbolic Layout IDE (SLIDE) PACK. It takes each
box in order from the list, places it in one corner of the bin andtlédd to the farthest corner
away,as if under the influence of a gravity that only allowed it to nmteogonally. The effect
is that a box will zigzag into a stable position in the oppasiteer from which it was placed.
Slide pack is fast as there is bhacktracking, and it is simple to compute. Its time complexity
is O(r9), where n is the number of boxes. (There angoskible orderings of the list of n boxes.)

The second algorithm is called SKYLINE PACK. For each box in the list, in order, it
triesthe box in all stable positions, and in all its orientations in the panpiatiiged bin. A stable
positionis one in which the box is tucked into a corner, or a cave formed by other previously
packedboxes. The algorithm takes its name from the fact that it tours the skyline formed by the
previouslypacked boxes to find the position in which the next box fits best. Skyline pack has
time complexity O(f).

Smith uses a modified crossover whitzkes the order of the boxes before the splice from
thefirst list and the order of the boxes which remain to be packedtfrereecond list after the
splice point (see Fig. 3).

string 1: 12345
string 2: 541321
child 12 543

Fig. 3. An example of Smith’s crossover.

One of the nutation operators Smith has experimented with is SCRAMBLE -- that is,
randomly reordering some portion of the list. FLIP mutation to tfgmiht orientations of the
boxes is necessary if the decoding algorithm does not try the box it is packing in all its
orientagions. The flip mutation operation may be applied discretely to boxes in the list.

A straightforward evaluation criterios the ratio of the area of the boxes packed to the
area of the bin. Smith [20] suggestsvay to measure partial bin packing, which favors boxes
filling in caves, especially if they fit tightly into the cave. There is some analogy here to
gravitationaleffects, and indeed such an evaluation allows us to pack in space as if the boxes
were attracted to eadalther. A practical disadvantage is that each time we run the process we
will end up wih a different packing. Note that paper [81] also has details of a GA on a
two-dimensional bin packing problem.

Paper[22] treats 1-D, 2-0and 3-D packing problems. The 2-D BPP is intuitively defined
aspacking a finite number of 2-D objects, always squares or rectangles, into a 2iCalgiven
heightand infinite length, minimizing the total length required. The 3-D BPP is an extension
of the 2-D BPP; the objectsuially studied are cubes or rectangular solids and the bin is has a
square or rectangular base and infinite height or length.

In [22], theauthors use the term stochastic optimization as a generic term for optimization
heuristicswhich include such approaches as GA and &W, their algorithm, which draws upon
both of the former. They define a figure as right-angled polygon loosely resembling thiee o
block letters. In [22] they assume that the length of each edge of a figure is a multiple of this
unit length. As a result, each figure occupies an iategrmber of unit squares. A figure has
a default initial orientation, but may be rotated 90, 18 degrees. A solution is a structure
[(f(1),0(2)), ... , (f(N),0(N))]; for a given problem with N figures, each figure is numbered
between0 and (N-1). They use f(i),_ 0®<(N-1), to represent th' bf N figures; o(j), 09(j)<3,
is the figure’s current orientation, and L is the length (cost) of the solufibeir algorithm has
5 components: (1) Initializatior(2) Selection, (3) Solution Generation, (4) Evaluation, and (5)
Termination. The algorithm works with a population of solutions.

(1) The population is initialized randomly, i. e. they generate an integer between 0 and
(N-1) for each f(i), and an integer between 0 and 3 for each o(i). Evaluation of each solution
produces its length L. The population is then sorted on L, from best to worst.

(2) Biased selection of solutions is femed using a linearly biased random generator.

26

The better the solution, the higher the probability of its being selected. The probability of
selectingthe best solution of the population is B times greater than the probability of selecting
the worst soluion, where B is a parameter (a bias) provided by user. Values of B used range
from 1.5 through 3.0.

(3). Geneating a new solution from one or more solutions already in the population
(called perturbabn in SA) can be performed in either of two ways. First, a new solution may
be "derived" from arexisting solution. A solution S is selected from the population using linear
bias. Several solutions in the "neighborhood" o&r® randomly generated and evaluated. If the
bestof these neighborhood solutions is at least as good as S (i.denih of the best solution
is equal to or Iss than the length of S), then the best solution is inserted into the population.
Two solutions are defined to be neighbors if the sequence in which their figures are placed is
idenical except for exactly two figures. The second method simply generates a new solution
randomly, as is done during initialization. Thepgmse of generating a solution randomly is to
introducenew permutations, possiblery different from those present in the population, in order
to prevent the population from converging prematurely.

(4). Evaluation of saition S involves assigning a location in the 2-D bin to each figure
suchthat no two figures overlap. The figures are assigned locations in thedefuled by the
permutation. Evaluation of solutions is deterministic, and there exists some permutation wh
when sent to the evaluation function, produces the optimal length.

(5). There are 3 conditions under which the process terminates:

*the population converges,

*no improvement in the best solution has occurred for aspeeified number of
iterations,

*a predefined maximum number of iterations is reached.

The algorithm is designed such that it can take advantage of multiple processors if
available. The algorithm is divided into two independent processes: process 0 and process 1.
Proces9) manageshe population of solution: collecting the initial solutions during initialization,
selecting solutins in order to form new ones, inserting new solutions, deciding whether a new
solutionswill be generated froman existing solution or whether an entirely random solution will
be formed, and checking for convergence or termination. Process 0 does everything except
evaluatesolutions. Process 0 sends a solution to Process 1 for evaluation. Process O is a master
processwhich farms out the time-consuming task of solution-evaluation to servant processes,
each of which may be executing on a different processor.

Thus, [22] differs from many other approaches in their description of the 2-D packing
problem, in the stochastic optimization algorithms they use, and in their use of multiple
processors to reduce execution time.

Nestingformulation. Given a finite set of arbitrary-shapetétments E={g...,e}. Place
without overlapping all or some of the elertsefrom E into a rectangular bin with edges X, Y
such that the relation of the sum of element areas to the bin area is the maximum.

Nestingin [29] is the process of selecting the optimal arrangement for a combination of 2-D

27

shapes on raw stocks in order to minimize materadtage while taking into consideration the
congraints imposed by the cutting process. The automatic layout process adopted in the
Patnest-Ship algorithm can be divided into three distinct steps:

(a) shape processing,

(b) local optimization, and

(c) rectangle packing.

(a) This process serves three main functions: Hirsgjects all invalid geometries, and does not
allow the boundaries defining the shape to cross. The shape processing routine will return to the
user upon detecting any invalid geometries,tfe necessary correction. Second, it transforms
the input data (i. e. graphics elements described randomly) into a logical data structure that is
suitable for use by the program. Thirdextracts information such as slope, length, change of
direction from one edge to another, area, and other simple properties from the data structure
describing the approximate geometry of thepghaA simple approach is a used to classify the
input shapes. Shapes are classified as: floors; brackets-rectangular; brackets-trapezoidal;
brackets-triangular, etc.

(b). There are two separate local optimization processes. The first aims at locatingatiest
rectangularenclosure for clustering similar shapes. The second aims at squeezing "small" shapes
into the void areas of "big" shapes. Some pre-defareghgements include: identical sides in
contact; rotating one part by 180 degrees and layinghbsigede; laying side-by-side. In cases
where more than one pair of similar plates needs to be nested, the paired plates ae ligid si
side until they touch. Hence an analysis of the most efficient arrangement for each class of
plateswas madend the most efficient arrangement for each class of plates was identified. The
secand method used to fit the "small" pieces into the void spaces of the "big" pieces is similar
to the 'rectangle packing" approach with a few added considerations. They include: the
irregularity of the boundgrimposed by the presence of the "big" plate as a constraint; and the
presenceof multiple void areas.Note that an additional check using the actual geometry of the
small shape is attempted even after the enclosing rectangle has failed.

(c). The steps involved in the "rectangle packing" process are as follows:
* sort the rectangles to be packed according to the criterion selected,
* place the first rectangle at one corner of the stock sheet,
* identify the pivot points created as a result of introducing a new rectangtév ot
points are corners created by neighboring boundaries of rectangles or the stock sheet,
* select thepivot point which gives the smallest resulting rectangle. Check that the newly
placed rectangle does not overlaghathe boundary of the stock sheet or with a
rectangle placed earlier,
* repeat step 4 for all remaining rectges until no more new rectangles can be laid on
the stock sheet.
Three different criteria were used to sequence the order of the plates to be nested: packed in
order of area,packed in order of length of the longer side of the enclosing rectangles, and the

28

length/breadthratio of the enclosing rectangles. Patnest-ship ruress ®%dN SPARC workstation.

The Patnest-AutoCAD pre-processor provides facilif@susers to input part geometry by using
AutoCAD’s drafting commands. It then converts these geometries into a specially formatted file.
After the automatic nesting process, the Patnest-AutoCAD post-processor can be used to
interagively modify the layout produced. The algorithm is based on the assumption that
ship/offshorestructural plates can be grouped into sevdeasifications, each with an "optimal”
arrangement for multiple similar pieces. By restricting the variety of shapes to pulatza,

the authors managed to reduce the problem size. However, Patnest-ship may provide rather poor
solutions if highly irregular shapes are present.

One of the most critical topics in [30] is the actual nesting, or positioning, of the part
blanks onto the metal strip or sheet stock. They developed an automated system based on
mathem#cal programming techniques which optimize blank nesting for a continuous strip
stampingprocesses. Efficient nesting of blanks on a coil of metal is essential to reduce the
amountof scap produced. Today, most such nesting is done manually [30]. The authors
formulate the problem by first describing the geometry of the part or parts to be nested for
stampingand specifying on initial layout. Theyse a novel integer grid technique to efficiently
and acarately compute the overlap between parts and then apply a Simulated Annealing
Algorithm (SAA) to determine a new part laytowith zero overlap and minimal scrap. They
assumeno restrition on the shape of the blank. The shape of the blank is provided by an
orderedlist of points on the boundary that are connected by straight |EBesn for very simple
shamsthere are two or more nesting arrangements that are locally optimal. A locally optimal
configuration has the following property:

there exists a d(0) such that for all d<d(0)

fY(0)+-d)=>f(Y(0) (1)

wheref is the objective function, Y(0) is the locally optimal configuration, and f(Y(0)) is the
local minimum. The global minimum satisfies (1) for all d(0).

The description of the btk is provided by an ordered set of points on the boundary of
the blank, which are connected together by straight line segments. They desire to minimize the
engineeringscrap: SCRAP = | * w - sum(i))AREA(i), where |, w are length and widtla @oil.

The objective function is thus OBJ = pressure * SCRAP + penalty * OVERLAP. The weight
associatedvith the SCRAP cost in the objective function is analogous to pressure. They take
the pressure =1. The neighborhood structure defines a set of configurations from which the next
move is picked at random.

They use a SAA (Simulated Annealing Algorithm) technique to allovafomcrease in
the value of the objective function & controlled manner, as opposed to a downhill-only iterative
improvement technique, vich only accepts moves that result in an immediate improvement in
the objective function. The following terminology is used to describe algorithm. A feasible
configurdion, (K), is a point in the allowable region; the controlling parameter, (T), is the
guantity analogous to temperature in annealing of solids; the cost C(K) is the quantity to be
minimized; the neighborhood of a configuration is a set of predefined feasible points from which

29

the next configuration is picked randomly; the Metropolis criterion is the acceptance/rejection
condition; a move is the process of picking a new configuration and applying a Metropolis
criterion; a cooling schedule specifies how teenperature is decremented and how many moves
are performed at each temperatiirethe cost function is said to be in a state of equilibrium at
T when the probability (Pr) of being in configuration K is Pr(config.=K)<&"?™ where Z(T)

= sum(j)e“9" is a normalization factor.

The Metropolis acceptance criterion can be described as follows. |If i is the current
configuration with cost C(i), then the probability of accepting j as the next configuration, with
AC = C(j) - C(i) is Pr{new=j|current=i}=1, ifAC<0; or =e*“" otherwise. The SAA is started
at a "high' T and a Markov chain of configuration is generated by randomly picking a
configuration from the neighborhood set oé tturrent configuration in the chain. The cooling
schedulespecifies how many moves are attempted at each temperature and fois teduced.

In summary, acceptance of intermediate configurations with higysts is the strength of this
algorithm. This property allows for "hillclimbing" moves, that is, climbing out of local minima.
During compuation of the overlap area, the interior is first discretized into triangles and then
eachtriangle in the first body is intersected with each triangle in the second body. They find the
boundaryof the overlap region and then compute its area. For the nesting of one blank, the
objective function is a function of two variables, configuration (C) and length (L). In all the
blank nesting problems the T is reduced by a factor of 0.9 -- that is, T(k+1) = 0.9*T(k).

Article [28] describes a typology of cuttirand packing (C&P) problems(C&PP). C&PP
appear under various names in the literature:

* cutting stock or trim loss problem;

* bin padking,dual bin packing, strip packing, vector packing, knapsack (packing)

problems;

* vehicle loading, pallet loading, container loading and car loading problems;

* assortment, depletion, dividing, layout, nesting, and partitioning problems;

* line balancing, memory allocation, scheduling problems, capital budgeting, change

making etc.

A typology founded on the basic logical structure of C&PP is develope@jnTBere are two
groupsof basic data whose elements define geometric bodies of fixed shapes (figures) in a one-or
more-dimensionaspace ofeal numbers: the stock of the so-called "(large) objects"”, and the list
or order book of the so-called "(small) items". The C&P process realizes patterns being
geometic combinations of small items assigned to large objects. C&P can also be considered
in an abstract, generalized sense takilage in non-spatial dimensions. Examples: knapsacking
and vehide loading for the weight dimension; assembly line balancing and multiprocessor
schedulingfor the time dimensiorgapital budgeting for financial dimension; computer memory
allocation for data storage dimensions.

The mostimportant characteristic of C&P is dimensionality. Elementary types are: 1-D,
2-D, 3-D, and multi-D problems. A 4-Drgblem might be obtained when a 3-D BPP in space
hastime as e fourth dimension. Another main characteristic is the way of measuring the
number of large objects and small items respectively: discrete (or integer) measurement; or
continuous (fractional) measurement. The combined type of 1-D problem with continuous

30

measirement is often called "one-and -a-half-dimensional” (1.5-D). The figure of an object or
an item is defined as its geometric representation in the space of relevant dimensiange A fi

is determined by its: form, size, and orientation. For multi-dimensionblgongs, an important
questionis whether the form of the figuresrsgular or irregular. The classification is given by
the shag(s) and number of permitted figures. The availability characterizes the quantity of
objectsand items considered. It refers to lower and upper bounds on their quantity; their
sequencer order; and the date whan object or item can be or has to be cut or packed. Four
important groups of pattern restrictions are identified:

* minimal or maximal distances between small figures or between cuts dividing large

figures are often important.

* the orientation of the small figures relativeetach other and/or to the large figure may

have to be taken into account.

* there may be restrictions with respect to the frequency of small items or figures in a
pattern,especially regarding the combination or numisiedifferent small
figures or the number of small items, be it in total or relative to certain
figures.

* the type and the number of permitted "cuts" are essential, particularly if the objects and

items are of rectangular or block form.
The objective function ofC&P problems often has geometrical as well as combinatorial aspects.
Someinclude both aspects, somene. Distinct kinds of criteria appear, depending on whether
they refer to the

* quantities of large objects or small and residual pieces assigned to patterns;

* geometry of the patterns (layout-optimization), or

* sequence, combination or number of pattern.

It is typical for many C&P problems that more than one objective has to be considered.
Combined types include:

1. Dimensionality: 1-D, 2-D, 3-D, N-D with N>3.

2. Kind of assignment: all objects and a selection of items; a selection of objects and all

items.

3. Assortment of large objects: one object; identical figures; different figures.

4. Assotment of small items: few items (of different figures); many items of many

different figures; many items of relatively few different (non-congruent) figures.

By combining the main types, one obtains 4*2*3*4 = 96 different types of C&P problem. It
becomes obvious that line balancing,ltipnocessor scheduling, and memory allocation belong
to the same combined type the classical bin packing problem. Solution approaches include:
1.0Object or item-oriented.
1.1 Branch and bound, dynamic programming;
1.2 Approximation algorithms.
2. Pattern-oriented.
2.1 One-pattern (knapsack algorithms);
2.2 Several patterns (linear programming (LP)-based and general heuristics).
Approachs of the first type (object or item-oriented) immediately assign items to objects.

31

Approachesof the second type (pattern-oriented) first construct patterns and then assign large
objects as well as small items to some of these patterns. The two main pattern-oriented
approaches can be distinguished deuristics and those based on LP relaxations. The quality
of a heuristic heavilylepends on the problem-specific choice of "good" patterns. The LP-based
appoximation algorithms first solve the LP-relaxation of the pattern-oriented model and then
searchfor an integer solutioby more or less sophisticated strategies, usually by simply rounding

up.

2.5.3. 3-D Bin Packing

Probkem formulation. Given a finite set of rectangular 3-D boxes Ez{ee} with
associatedizes W={(x,,Y1,,Z;)-.-(X,¥YnnZ,)} such that 0x,y;,z<L*. Placewithout overlapping
all or some of the boxes from E into a rectangular 3-D bin with dimensions X>l*, Z>L*
such that the relation of the sum of box volumes to the bin volume is the maximum.

In paper [82], theuthors extended the classic Bin Packing problem to three dimensions.
They investigated the solutisrfor the 3-D packing problem using first fit and next fit packing
strategies witrand without GA’s. They studied several existing crossover functions for GA’s:
PMX, Cycle,and Order CO. They presented a new crossover function, Randl. The GA was
testedusing a randomly generated initial population pool and using a seeded initial pool. The
seededpool was generated from a package (small item) ordering produced by rotating and sorting
the packages by decreasingight. In [82], it is shown that the seeded GA using Next Fit and
PMX produced the best overall results for the data sets te$tesl.seeded GA using Next Fit
and Order CO provided the best results considering both rapid execution time and packing
efficiency.

In paper[83], a GA for macro cell placement problem is presented. The algorithm is
basedon a generalization of the 2-dimensional bin packing problem. The genetic encoding of
a macro cell placement and the corresponding genetic operators are described. The algorithm
hasbeen tested on a benchmark, and the quality of the placements produced is comparable to
other published results for the benchmark.

In [20], the authors present GA's for two NP-hard problems, the bin packing and line
balancingproblems. Theylefine a cost function suitable for the bin packing problem, and show
that the classic GA performs poorly on thimlem. They present an improved representation
fitted to these problems. Efficient crossover and mutation operators are introduced for bin
packing. Results of performance tests on randomly generated data are included.

Paper[26] describes a way to create a multiple-chromosome GA that performs well on
a 3-D packing problem involvingegular-shaped boxes of different sizes and weights into larger
containers.The heuristic solution developed, called SMILE [84], is a layer-by-layer scheme that
scheme that finds the appropriate boxes in the next layer. They combine the
multiple-chromosomé&A and SMILE to solve the 3-D BPP. Let N the total number of boxes
to be packd, L the total number of layers, LEN the length of the container, WID the width of

32

the contaner, VOL(i) the volume of box i, and MAXH(L) the height of packing when the
packingjob is done. They assume that LEN is greater or equal to WID forcbathiners and
boxes. Thus the packing cost, objective function, can be expressed as follows:

minimize C=(MAX(L)*LEN*WID)-sum(i=1,N)(VOL(i)),

subject to the constraints:

*Each box must occupy a unique and contiguous space.

*Each space is assigned to at most one box.

*The heavier boxes are placed below the lighter ones.

*All unit cubes assigned to a box must be contiguous and partially sum to the shape of

the box.

*A box has a certain side that is the right side up.

A hybrid GA (HGA) has 5 components that must be designed: RepresematoICEvaluator,
Generator, Decoder.

Representor.In this application, the chromosomes siraply treated as permutations of
thelist of boxes to b@acked. In [26], a multiple-chromosome representation is proposed, instead
of a single chromosome, to represent an individual. An individual represents one layout and each
chromosome represents one layer. The sys&acts the high performance individuals for the
next generation, budoes crossovers and mutations only among homologous chromosomes and
without intra-chromosome exchange. In other words, crossovers and mutations are done layer
by layer for single or paired individuals.

Creator. The initial population pool is another basic components of GAs. thest,sort
the boxes by their weight; ihe weight of two boxes is the same, then the larger volume one has
higher priority. Second, they search the available space for thesedmmoeding to the sorted
list to construct the first feasible layout, which is used as the first populatidme\sguarantee
at least one feasible layout can be found. Tlimdy do mutation on chromosomes based on the
existing individuals, until N individuals, a predefined limit taken to leghme as the problem
size, have been created.

Evaluator. Interpretation is a minimization problem. They téke objective function to
be the fitness valuef an individual so that the preferred solutions have smaller fitness values.
Whentwo individuals have theame fitness value, a vertical cross penalty will be considered as
the second criterion in terms of the quality of the population.

Generator. The selection of parents to reproduce uses rowgigel selection. Since this
is a mnimization problem, individuals with smaller fithess values have higher probability of
beingselected as the parents for the next generafltre arithmetic inverse is used to adjust the
fitnessvaue of population when the roulette wheel selection method is applied. The order of
the chromosome is very important in assuring #ary box has been assigned to one and only
onelocation. All operations that modify the individuals in the population mugiebermed in
a structure-preserving way. The partially mapped crossover methaed to perform crossover
of two selected individuals. Thisformation is used by GAs to select high-quality chromosomes
accoding to their performance and to cross these notions with many other high performance

33

notions from other strings to produce the next generatidmstation operations carry out local
modifications of chromosomes and are needed because even though selection and crossover
effectively search and recombine extant notions, they may become overzealous and lose some
potentidly useful genetic material. They also use an "inversion" or reordering operator.
Inversionacts by partially shuffling the string componenReproduction is used to generate the
next generation after crossover and mutation are performed on the selected individuals. To
guarantedhat the best individual is nadst during these operations, an elitist policy is adopted.
In other words, iho better individuals has been discovered between generations, the elitist policy
simply carries forward the most fit individual from the previous generation into the next.
Reproductiorwill maintainthe same number of population from generation to generation without
losing the best one so far.

Decoder.An ordering listof boxes string does not directly represent a packing layout. It
is important to transfer the ordering string into a feasible 3-D layout. Heuristicwililde used
whengenerating the layout accorditite order of chromosomes. The best individual, which has
the minimum objective function among these individuals from the first generation to last
generation, will form the final layout of the packing.

2.5.4. Compaction

Problem formulationMinimize the area of the layguwhile preserving the design rules
and not altering the function of the circuit; bathand y coordinates of elements can be changed
simultaneously.

In [78], the genetic algorithm evolves populations of strings, the length of which is not
fixed. New individuals are produced by a stochastic mix ofcthssical genetic operators [4-6]:
crossovermutation and inversion. The laygutoblem may be thought of as a form of 2-D bin-
packirg [78]. A collection of rectangles is to be placed in the plane to satisfy certain design
rules and minimize some cost function. The simplest version of this problem has:

- rectangles of fixed sizes,

- a design rule such that distinct rectangles should not overlap,

- cost given by area of bounding box.

This version of the problem is already intractable. Suppessatisfy the constraint that
the distinct rectangles, p, q should not overlap, by stipulating that one of the 4 elementary
constraintsp above g, elow g, p left g, p right q is satisfied. Then for n rectangles, we have
N=nr?-n pairs ad, a priori, 4 elements in our search space of layout strategies. This approach
considerdayout strategies made of consistent lists of elementary constraints. The rectangles
areplaced in the first quadrant of the plane as close to the @dgis consistent with the list of
elementary constraints.

Populatons of consistent lists of constraints are evolved using various orderings for
selection[78]. The simplest criterion attempts first to remove design-rule violaéindghen to
reducethe area of the layout. Strategies with fewer violations beat those with more and, for

34

thoe with the same number of violations, strategies with smaller bounding boxes win. This
simple prioritization of concerns has led to the generation of some unpromising strategies -- while
the selection criterion was busy removing design rule violations, for example rateggtwith

few such violationsqompared to the current population norm) was accepted. Fourman found
that the performance of the algorithm was improved by introduaiselection favoring shorter
chromosomes. His algorithm selects a criterion randomlly gae it has a selection to make.
Eachtime the algorithm is asked to compare two individuals, it non-deterministic chooses one
of these dteria and applies it, ignoring the others. The resulting populations show greater
variability than when a deterministic selection is used involving all criteria simultaneously.

Then,Fourman considers a symbolic layout of blockanected by wires. The rectangles
(blocks) are of fixed size and may be translated butratatted. The interconnected lines (wires)
are of fixed width but variable length. A surface level deals with tiles of three kinds---blocks,
horizontal wires, and vertical wires. In additiandvolving layout constraints dealing with the
relative positions of tiles (above, right of etc.), Fourman ustsea list of structural constraints,
to representhe information in the symbolic layout, and fundamental constraints, which represent
the size limitations of tiles.

Structural constraints: v crosses h, Nbv, Sbv, Ebv, Wbv. Here v, h are the vertical and
horizontalwires and b is a block. These constraailsw stipulation of which wires cross (and
hence are connected) and which wires eahrio which edges (North, South, East, or West) of
which blocks. At adeeper level, unseen by the user, the problem is represented in terms of the
primitive layout elements, north b, south b, east b, west b, left h, right h, y posn h, top v, btm
v, and X posn v.

For eah tile, Fourman generates a list of fundamental constraints expressing the
relationshipbetween the primitive layout elements arising from it. Again, he evolves lists of
layout constraints. These are compiled, together with the fixed structural and fundamental
constraintgepresenting the symboliayout, to give graphs of constraints on the primitive layout
elements, whose positions are thus determined. The number of design-rule violations and the
area of the resulting layout are again used to select between rival strategies.

The algorithm appeared to ggiuck for long periods on local minima (in the sense that
one (non-optimal) configuration would dominate the population). This &dckariation in the
population reduced the usefulness of crossover. When mutation led to a promising new
configuration, there would be a period of experimentation leading rapidly to a new local
minimum.

The genetic algorithm may be viewed as a (nhon-deterministic) machine which is
programmed by supplying it with a selection criterion---an algorithm for comparingjstsaf
constraints. Fourman experimented with various selectiateria based on combinations of total
intersetion area of overlap involved in design-rule violations, and the area of a bounding
rectangle. Fourman also implemented tltea of having several weakly interacting populations
running in parallel.

In [85], conpaction (CMP) is carried out simultaneously in both x and y directions. It
exploits the full freedom to place blocks and wires in its search for an optimal solution. The
layout CMP problem can be described as follows: Given the description of a layout, either in

35

symbolicform or as atick diagram, they want to space the circuit elements and interconnections
to minimize the total chip area. Only orthogonal structures are allowed. pfyeegsed a search
algorithmbased on the technique of simulated annealing (SA). This method examines complete
solutionsone after another, while a branch and bound algorithm, partial solutions are examined
and expan@d. An advantage of examining complete solutions is that it allows termination of
searchaccading to any time limit, since one can always keep track of the best solution
encounteredo far. Given a symbolic layout such as a stick diagram,fifgtyconvert it to a

set of rectangular elements. The CMP algorithms then rearranges these raceegunts to

obtain a more compact layout satisfies all the design rules and preserves the given connection
requirements of the circuit. A given SL consists of a set of elements which are blocks, horizontal
connecting wires, and vertical connecting wires.

A placement is a specification of the positions of the rectangles in the plane. The
positionsof a rectangle can be specified by the coordinates of its lower-left and upper-right
corners. Then a layout can be specified by the 4 setalohuenbers (X,Y) (X',Y’). The size
of a layout is defined to be the area of the bounding rectangle, namely AREA = max{@m
X or XPmax{Z | Z from Y or Y’}. A valid layout is a choice of the values X, X’; Y, Y’ so
that a certain set of constraints is satisfied. There are 4 types of constraints: size constraints,
overlap constraints, minimum distance constraints, and user-specified constraints. In [85], the
constraints are classified as follows:

1. B, tho® constraints that MUST be satisfied, which include the size constraints, the

overlap constraints, and the user-specified constraints, and

2. D, those constraints thate divided into groups such that at least (or exactly) one of

the constraints in each group must be satisfied.

A valid set of constraints is a subset E, of constraints that contains all the constraints in B and
at least (or exactly) one constraint in each group in D. The goal of 2-D CMPligaio a valid
layout of minimum size. The key to obtaining the optirf@MP is to have an efficient procedure

to choog the set of E of constraints. They propose a method that first reduces the size of the
solution space and then uses the technique of SA to choose the set E of constraints.

In [85] theyreduce the size of the solution space using some pruning techniques. The
first pruning techniques to reduce the number of variables in the problem. The second pruning
techniqueinvolves pruning some of theonstraints in the groups in D. After the pruning phase,
the algorithm poceeds to look for a set E of valid constraints. The method of SA is used for
this purpose. It is also well-known that to &lele to efficiently apply SA, we need the following
key ingredents: a concise solution representation; a good neighborhood definition; a suitable
cost function; and an annealing schedule. They represent valid layouts by using the
correponding valid sets E of constraints that they satisfy. Conversely, given a set E of
constraints, they can apply the matha [52] to obtain a layout solution J(E) that is minimum
with respect to E. For any solution E, they let C(E) = AREA(J(E)) be the cost function. The
cod function can be computed using the longest path method [36,66]. Given a solution (B or
M), they ddine a move as the operation of selecting a group in D and exchanging a constraint
for one in that group. Two solutions (B or M) and (B or M) are said to be neighbors if M’ can

36

be obtaired from M by the interchange of the chosen constraint in one of the groups in D. It
is possible to go from a given solution to any other via a sequence of moves.

The SA algorithm can start witany initial solution. To speed up the search, in [85] they
haveincorpaated an initial search to look for a consistent set of constraints to be used as the
initial solution E. In [85], they used a fixedtio temperature schedule T(k) = r*T(k-1), k=1,

2, Exmrimental evidence [85] indicates that setting r to 0.9 produces satisfactory results.
The SA algorithm involves many thousands of moves in its search for good solutions. The
methodusedin [85] proceeds in two steps. The first step is ar)@mining algorithm to reduce

the size of the solution space. The second step employs simulated anneakamitoe layout
solutions one after another in its search for an optimal layout solution.

2.6. Conclusions

Compactionis the last layout subproblem in our phased approach to layout. The main
purposeof compaction is to achieve independence from the specific fabrication technology.
Today, the most commonly used approach to compaction is graph-based compaction. This
framework provides a basis for 1-D and 2-D compaction. Heuristics exist for interrddating
dimensionsefficiently during the compaction without solving the 2-D compaction optimally.
Graph-basedompaction handles only rectangular layi@attures. A large portion of compaction
deals with intricate sets of desigmes. Fabrication technology may dictate many complicated
design rules. For ultrafast circuits, the die area is no longer the single fundtierofimized
-- we also need to involve the circuit delay or performance.

The bin packing problem is NP-hard in all of its many formulatioAsfew versions of
1-D compaction are NP-hard. Most version2dd compaction are NP-hard. The difficulty of
2-D compactio lies in determining how the two dimensions of the layout must interact to
minimize the area. To circumvent the intrinsic complexity of this question, some heuristics
decidelocally how the interaction is to take place. New perspectives for better solving of
compation have been discovered by applying various forms of genetic algorithms to the
problem. But these GA approaches are far from perfected, wsudlly is with first attempts to
use a new approach on a diffitpkoblem. Some of the weaknesses were described in section
2.4. For example, the algorithm in [78] appeared to get stuck for long periods on local minima;
a practical disadvantage of [25] is that each time we rumptheess we will end with a different
paking. Now, on the basis of newly published GAs and the new ideas of the authors, as
described in section 1.1, we hope to continue the develdpoieeompaction, bin packing, and
nesting using genetic algorithms.

Compactionand bin packing problems are closely related to each offwerexample, 2-D
bin packing can be regarded as 2-D compaction without some of its constraints -- all element
sizesare fixed and therare no restrictions on connectivity of elements. In some sense, we can
saythat the bin packing problem &less restricted compaction problem. So it seems rational
to start with bin packing problems and then to extend the investigation to compaction.

In our future work, we are planning to generalize 2-D and 3-D formulations of bin

37

packingto make these problem closer to compaction. Then we are goixgltoe some of the

many ideas concerning GA’s (see, for example, Table 1 - Table 5), which have been found to
be efficient for other applications or in nature, to see which may be most twesalving bin
pading problems. Finally, we want to try these useful ideas, selected during the bin packing
investigaton, for the compaction problem. The above-mentioned problems and our goals are
represented in Table 6 - Table 9. We assume that @G#ig will allow both layout and logic
designers to explore more of the solution space to find the best possible design.

38

Table 1. Examples of Crossover Operators from Various Applications

nce
must

es

ng

nce

rst

ond

the

the

The

to

Operation Source Comments
. ___

One-point [4] A schematic of one-point CO shows the alignment of two strings and the

CcO partial exchange of information using a cross site (point) chosen randomply.

Two-point [86] Two-point CO treats the string (chromosome) as a ring. Two unigue pojpts

CO are selected at random, breaking the ring into two segments that are
exchanged between the parents to produce two offspring.

Multi- [86], Multi-point CO is the extension of two-point CO. Like two-point CO, it

point CcO [87] treats the string as string which the crossover point cut into segments S
the segments of the child must alternate between the two parents, therg
be an even number of segments, and hence an even number of crossqper
points. By increasing the number of pairs of crossover points, it decrea
the positional bias and it introduces a distributional bias.

Order CO [6], [88] Pass the left segment from parent 1. Construct the right segment by taki
the remaining elements from parent 2 in the same order.

Enhanced | [89] Enhanced order CO proceeds almost the same as order CO. The diffevne

order CO is only that after two cut crossover points are chosen at random in the |j
parent, the second parent is rotated until the element just before the s
cut point is the same as the element just before the second cut point in
first parent.

Partially [5], [90] The right segments of both parents act as a partial mapping of pairwisg

mapped exchange to be performed on parent 1.

CO (PMX)

Cycle CO [91] Cycle CO performs recombination under the constraint that each locus
(gene) comes from the identical position in one parent or the other, and| it
thus tends to preserves absolute position of each locus to the maximun)
extent feasible, while sampling features of both parents approximately
equally.

Heuristic [92] The heuristic CO in [92] constructs an offspring for a traveling salesmai)

CO (an problem (TSP). Pick a random city as starting point for the child’s tour

example) Compare the two edges leaving the starting city in the parents and chopse
the shortest edge. Continue to extend the partial tour. If the shorter
parental edge would introduce a cycle into the partial tour, then extend
tour by a random edge. Continue until a complete tour is generated.

Pattern CO [93] Pattern CO is achieved by replacing the alleles (genes) in a string from|
schema (for example) A, with the corresponding genes of schema B anp
vice versa.

Punctua- [94] To the end of each string, attach another bit string of the same length.

ted CO bits in the new section are interpreted as crossover punctuation (1 for jyes,
and O for no). The bits from each parent string are copied one-by-one
one of the offspring from left to right.

39

ents

Segmen- [86] Segmented CO is a variant of multi-point CO, which allows the number||of

ted CO crossover points to vary. Instead of choosing in advance a fixed numbgr of
unique crossover points, a segment switch rate is specified.

Uniform [95], Uniform CO exchanges bits rather than segments. For each bit positior||in

CcO [96] the string the bits from the two parents are exchanged with fixed probapility
p. Uniform CO removes the positional bias of traditional one-point CO.|| Its
use, however, renders inversion useless and linkage (epistasis) meanir‘“gless.

Shuffle CO [86] Shuffle CO is similar to classic CO [4] except that it randomly shuffles the
bit positions of the two strings in tandem before crossing them over an
then unshuffles the strings after the segments to the right of the crossi
point have been exchanged. Shuffle CO is designed to eliminate positignal
bias by having a schema disruption probability that is independent of
schema defining length. Of course, its use renders inversion useless.

Analogous [97] Analogous CO is a modified CO designed to work with order-dependeny

CcO production programs. In contrast to classic CO, which determines
corresponding crosspoints according to their respective positions in the
strings, analogous CO uses the phenotypic function of parameters as tlje
corresponding cross point criterion.

Masked [98] Masked CO uses binary masks to direct CO. Masked CO is used to

CcO preserve schemata identified by the masks.

Position- [95] A set of positions is random selected, but in this operator, the positions]Lof

based CO elements selected in one parent are imposed on the corresponding ele
in the other parent.

Edge [99] This CO involves building a table of adjacent elements in each parent gnd

recombi- then constructing a child using the adjacent information in the table. Egge

nation CO recombination CO builds a child with elements that are almost always next

to each other in one or the other parent.

40

Table 2. Examples of "Non-Standard" Architectures for GA-related Search.

Searc Sourc Comments
h e
I e —
GAMAS - [100] This paper presents an "improved” GA based on migration and artificial
migration selection (GAMAS). GAMAS is an algorithm whose architecture is specificglly
and designed to confront the causes of premature convergence. GAMAS is no
. concerned with the evolution of a single population, but instead is concernggd
artificial with macroevolution, or the creation of multiple populations, and the derivatjon
selection of solutions from the combined evolutionary effect of these populations.
GAMAS claims to consistently outperform simple GAs and to alleviate the
problem of premature convergence.
Metalevel [101] Author attempts to determine the optimal control parameters for GA’s. He
GA’s describes experiments that search a parameterized space of GA'’s in order[fo
identify efficient GA’s. This search is performed by a metalevel GA. Authqr
studies 6 parameters characterizing GA’s: population size, crossover rate,
mutation rate, generation gap, scaling window, and selection strategy. The
metalevel GA uses this information to conduct a search for a high-performghce
algorithm. The experimental data suggests that while it is possible to optir’%’ze
GA control parameters, very good performance can be obtained with a range of
GA control parameter setting.
[102] They use the meta-genetic algorithm [101] to optimize a GA for cell placemnjent.
The three parameters optimized are the crossover rate, inversion rate, and
mutation rate. They vary crossover rate and mutation rate during the
optimization. The meta-genetic algorithm is itself a genetic optimization
process, which runs a GA to solve a placement problem, and manipulates |fs
parameters to optimize its fithess.
SIGH - [96] A search strategy called stochastic iterated genetic hillclimbing (SIGH),
stochastic resembles both simulated annealing and GA. However, in SIGH, the
iterated convergence process is reversible. The connectionist implementation makes it
itera e . possible to diverge the search after it has converged, and to recover
genetic hill- coarse-grained information about the space that was suppressed during
Climbing convergence. SIGH can be viewed as a generalization of a GA and stochgstic
hillclimbing algorithm, in which genetic search discovers starting points for
subsequent hillclimbing, and hillclimbing biases the population for subsequént
genetic search.
PE - [103] Uses two principles of the paleontological theory of Punctuated Equilibria (HE) -
Punctua-ted allopathic speciation and stasis. Allopathic speciation involves the rapid
Equilibria evolution of new species after geographical separation. Stasis implies that|after
equilibrium is reached in an environment, there is little drift in genetic
composition. PE stresses that a powerful method for generating new speciges is
to thrust an old species into a new environment -- that is, a new adaptive
landscape, in which change is beneficial and rewarded. They chose this njethod

for an optimal linear arrangement problem.

41

CHC

[104]

A nontraditional GA which combines a conservative selection strategy, that
always preserves the best individuals found so far, with a radical (highly
disruptive) recombination operator that produces offspring that are maximal
different from both parents.

%

42

Table 3. Examples of Selection Methods and their Modifications and Properties.

Strategy

Sourc
e

Comment$

SSwWR - [4], [5], Based on roulette wheel selection. In SSwR, the wheel is composed of]

e

after

not

Sampling

generation and a high overall bias. DS is not widely used.

Stochastic [6] original expected values and remains unchanged between spins. SSwWR
. i provides zero bias, unlimited spread K)>cost O(NlogN) and is not readily

sample with [87], parallelizable.
replacement | [105].
SSwWPR - [105] SSwPR provides medium bias, upper bounded spread, cost O(NlogN) andl is
Stochastic not readily parallelizable.
sampling with
partial
replacement
RSSWR - [105] In RSSWR, the fractional parts of the expected values are sampled by th
Remainder roulette wheel method. The individual’s fractions remain unaltered betwe)
stochastic spins, and hence continue to compete for selection. It provides zero bias

.) lower bound on the spread, cost O(NlogN) and is not readily parallelizabﬁ.
sampling with Any individual with an expected value fraction > 0 could theoretically obtgjn
replacement all samples selected during the fractional phase.
RSSwoR - [105] RSSwoR also uses the roulette wheel for the fractional phase. However
Remainder each spin, the selected individual's expected value is set to zero. Hence,
stochastic individuals are prevented from having multiple selections during the fractipnal

. phase. It provides medium bias, minimum spread, cost O(NlogN) and is
Sa'-mp“ng readily parallelizable.
without
replacement
DC - [105], DS provides high bias, minimum spread, cost O(NlogN), and is not readily
Deterministic [106] parallelizable. The result of a DS is a minimum sampling error for each

43

RSIS - [105] The fractional phase in RSIS is performed without use of the error-prone
Remainder roulette wheel. This is accomplished by deterministically assigning offspring
stochastic according to the integer part of the expected value, and using each fractipnal
; expected value as a probability of selection. It provides low bias, minim
'ndep?ndent spread, cost O(N). However, it requires traversing the population and mak
sampling a stochastic decision for each individual.
SuUS - [4], SUS is a simple, single-phase, O(N) sampling algorithm. It is zero biased
Stochastic [105] minimum _sprea_ld and will aghieve all N samples in a single traversal. The
universal algorithm is strictly sequential.
sampling
RE - [107] RE is a heuristic method for improving GA search. RE, when used in
i conjunction with an exponential bias, focuses the search by biasing the
Reproductive
evolution allocation of reproductive trials toward schemata which are the most
promising candidates for reproduction.
LR - Linear [108] Selection in evolutionary algorithms is defined by selection (reproduction)
ranking probabilities p(s)(a(i,t)) for each individual within a population. Here a(i,t) |5
an individual in population P(t)={a(1,t),.../a()}, t from N, A>1. For LR
probabilities p(s)(a(i,t)) = Mhmax-(hmax -hmin)(1-i)X-1)), where hmin =
2-hmax and 1< hmaxx
UR - Uniform [109] For UR probabilities p(s)(a(i,t)) = 1/m, if k&m or = 0,
ranking if m<i<A.
PS - [4], For PS probabilities p(s)(a(i,t)) = f(a(i,t))/sum(j#)(f(j,t), where f, the fithess
Proportional [109] function, provides 'the.environmen_tal feedback for selection. Many selectigin
selection methods are specific implementations of PS.
Extinctive [109] The term preservative describes a selection scheme, which guarantees a
versus non-zero selection probability for each individual; i.e., each individual has|la
. chance to contribute offspring to the next generation. A selection schem
preser,va tive called preservative if for eachG>for each P(t)=(a(i,t), ..., &aft)), for each i
selection from (1, ...,A) p(s)(a(i,t)) > 0. A selection scheme is called extinctive if fojf
each t_9, for each P(t), there exists an i such that p(s)(a(i,t)) = 0.
Left- versus [109] A selection scheme is called left extinctive selection (LES) if for each t>0} for
right- each P(t), there exists L from {1,A-1}, i<1 => p(s)(a(i,t))= 0. A selection
extinctive scheme is called right extinctive selection (RES) if for each t>0, for each [P(t),
lecti there exists L={2,..4}, such that i* => p(s)(a)i,t)) = 0. Of course, in any
selection

condition the sum (i=2,)p(s)(a(i,t))=1 must be satisfied.

ing

has

is

44

Dynamic [4], A selection scheme is called static if there does not exist i from A},such
versus static | [109] that for all 0, probabilities p(s)(a(i,t)) = c(i), where c(i) are constants. A
Versus selection scheme is called dynamic if for each i from {i}...and for each
) t>0 probabilities p(s)(a(i,t)) = c(i). PS is a dynamic preservative scheme;“ﬁ
proportional realizes a static, preservative scheme; UR is a static and extinctive selecfion
selection scheme.
schemes
ES - Elitist [5], In an ES scheme, some or all of the parents are allowed to undergo seldgtion
selection (the [87], wiéh tgeirI offsprinci:;. This mirg];ht result i|r|1 Lénlirgitedklifelrtime? (;f super-fit »
individuals. A selection scheme is called ES or k-elitist if there exists k ffjpm
pr_o_perty of [109] {1,...,A}, such that for each t > 0 and for each i from {1,...,.k}, f(a(it)) *
elitism) f(a(it-1)), where * denotes the relation in case of minimization task and 3
in case of a maximization problem.
Pure selection [109] A selection scheme is called pure if there is no k for {1}. which satisfies
the k-elitist property.
Steady- state | [5], SSS is a special variant of elitist selection in which the set of parents
versus [87], incorpohrated intofsselsescti[onOiT Iargefr]c than the setdof o;‘fsprinlg, which is of gfize
. 1. In the case o 110], an offspring immediately replaces a parent |f it
gener?‘tlonal [109], performs better. The set of prospective parents may change for every stgp of
selection [110] reproduction. In contrast, in generational selection, the set of possible pgrents
remains unchanged until all offspring for that generation have been
produced.
Incest [104], The IP mechanism is a relatively direct approach for preventing similar
prevention [111] individuals from mating. Individuals are randomly paired for mating, but ajle
only mated if their Hamming distance is above a certain threshold. The
threshold is initially set to the expected average Hamming distance of thg
initial population, and then is allowed to drop as the population convergey.
CHC'’s [104] CHC is a GA that combines elitist replacement-selection with an unbiaseq
selection reproduction-selection strategy. CHC is able to moderate selection presgpre.
It eliminates the traditional selection bias for reproduction, and relies only|
upon the fitness-bias of replacement-selection. CHC is said to be able tq use
mating and recombination strategies that help maintain diversity.
Sharing [5], Developed and investigated to permit the formation of stable subpopulatigns
functions [112] of different strings within a GA, thereby permitting the parallel investigatigp

is nothing more than a way of causing a degradation of an individual’s p
due to presence in the population of a neighbor at some distance as me
in some similarity space. For multimodal problem spaces in which on-lin
performance is important, a GA with sharing is able to maintain stable
subpopulations of appropriate sizes: the number of points in each cluste|| i
roughly proportional to the peak fitness value in the neighborhood of the
cluster.

of many peaks (when on-line performance is important). A sharing func%?n

S

off
ured

45

en
ing

GS, PhS - [113] When the proximity of individuals is defined in the decoded parameter spgce,

Genotypic it is called PhS. The use of sharing based on genotypic proximity is callgd

and genotypic sharing or GS. The genetic closeness of two individuals may [je

) taken as the number of different alleles in their chromosomes (the Hamm|ng

phenotypic distance between the strings, for binary representations).

sharing

CS - [87], Crowding can be used to modify many selection schemes, altering the stfjategy

Crowding [113] for selecting individuals to replace with new offspring. In crowding, sepafpte

scheme niches are created by replacing existing strings according to their similarify to
other strings in an overlapping population. Two parameters, generation dap
(G) and crowding factor CF, are defined. G dictates the fraction of an
overlapping population that is permitted to reproduce each generation. When
selecting an individual to die, CF individuals are picked at random from tlje
population, and the one which is most similar to the new individual is ch%
to be replaced, where similarity is defined in terms of the number of mat
alleles. In [87] CF=2 and 3 were found useful, with G=0.1.

FS - [5] A linear scaling modifying "raw" fithess before selection. The raw fithness

Fitness and the scaled fitness f' are defined. Linear scaling requires a linear

scaling relationship between f and f: f = af + b, where a and b are the coefficiernts;

they may be chosen in a number of ways. However, the researcher gengrally
wants the average scaled fitness f'(avg) to be equal to the average raw flfness
f(avg). To control the number of offspring given to the population membﬂr,
one can use maximum fitness f'(max) = c(mult)f(avg), where c(mult) is th
number of expected copies desired for the best population member. For
typical small populations (n = 50 - 100) a c(mult) in the range [1.2 - 2} has
been used successfully.

Preselection

[5],
[114]

In this scheme an offspring replaces the inferior parent if the offspring’s
fithess exceeds that of the inferior parent. In this way, diversity is maintg|ned

in the population, because strings tend to replace strings similar to themgglves
(one of their parents).

46

Table 4. Mutation Operators (MO).

Operator Sourc Comments
e
SMO - [4], SMO is the occasional (with small probability) random alternation of the vjlue
Simple MO [5] [6] of a string position. In the binary coding this simply means changing a 1 tgfa O
' or vice versa.
CMQO'’s - [5], CMO-1 changes a single pixel within a detector.
Cavicchio’s [114] CMO-2 changes all pixels within a detector.
MO CMO-3 changes pixel associations between adjacent detectors.
Bosworth, [5], 1. Fletcher-Reeves (FR) MO. It is a fairly sophisticated hill-climbing algorithm.
Foo and [115] In FR MO, approximate gradient information (obtained from 2r other functign
Zeialer MO evaluations, where r is the number of real parameters) is used to determing the
9 line of conjugate ascent, which is then explored using golden search. Not

widely applied in practice.

2. Uniform random MO.

3. Quadratic gaussian approximation MO.

4. Cubic gaussian approximation MO.

5. Zero MO.
KA - [5], Encodes multidimensional parameter optimization problem using real
Knowledge- [115] parameters. In [115], developed several MOs incorporating nonpayoff
Augmented information. KA MO uses FR MO (a conjugate gradient method) and goldgn
M(? search together as a MO. The use of KA MO has not been restricted to N|O.
FSMD - [116] The mode of MO is determined by the interval within which a number seleftted
Finite-state from a random number table lies. The intervals are chosen in accordanceljwith
machine a probability distribution over the permitted modes of MO. Additional numljers

) are then selected in order to determine the specific details of the MO. This, the

diagram offspring is made to differ from its parent either by an output symbol, a stafe
MO transition, the number of states, or the initial state.
PB - Position- [117] Two tasks are selected at random, and the second task is placed before the first.
based
OB - Order- [117]_ Two tasks are selected at random, and their positions are interchanged (also
based called "swap" mutation.
SMO - [117] Under the assumption that the neighborhood of tasks in a task list is impoftant,
Scramble MO it chooses a sublist randomly, and scrambles the order of the tasks within [the

sublist.
MMO - [118] It represents an attempt to adapt the GA to dynamically changing problemg. A
Mass MO reasonable strategy would be to restart the GA periodically with a newly

generated population (often randomly generated) independently of the prevjous
solutions. The alternative that suggests itself is to include in an initial
population for the incoming problem some (current or earlier population) offfthe
evolving current solution modified by MMO.

47

For each entry in the chromosome, UMWO will, with fixed probability (sz”l,

5 in

er

rd
ourth

bns
box

11%

S

UMWO - [119]

Unbiased- for example), replace it with a random value chosen from the initialization

mutate- probability distribution.

weights

operator

BMWO - [119] For each entry in the chromosome, this operator will, with fixed probability

Biased- (p=0.1, for example), add to it a random value chosen from the initializatiof

mutate- probability distribution.

weights

operator

SMO - [93] SMO combines extra features present in schema A with those of the string

Supervised B'=B-A. Thus, it is spreading proven qualities in a controlled way to a larg

MO population. If the superiority of one of the schemata is not evident SMO nffight
be superfluous.

Varying [115], 4 mutation regimes are used. The first consists of a constant probability MO

probability of [120] across all bits and over all generations, as is usually the case. The secon

mutation decreases the probability of MO exponentially over generations while the t
increases it exponentially over the bit representation of each integer. The
regime is a combination of the second and the third.

FMO - [25], FMO is used for solving bin packing problems. FMO tries different orientat

Flip MO [117] of the boxes, which is necessary if the decoding algorithm does not try the
it is packing in all its orientations. FMO is applied discretely to boxes in th
list.

MO BPP - A [20] The MO BPP is follows: Given a chromosome, select at random a few bi

MO for the and eliminate them. The objects which composed those bins are thus misging

bin packing from the solution and they are re-inserted in random order using a first fit

algorithm.

48

Table 5. Inversion and Other Operatormnd Some Descriptive Terminology.

Operation

SINO -

Source

[41.[5],

Comments

Two points are chosen along the length of the

S

Simple (linear) [121], chromosome. The chromosome is cut at those points

Inversion Operatol [122] and the order of the cut section is reversed.

L+E INO - Linear | [5], [121] | The L+E INO performs SINO with a specified

+ end INO probability (for example, 0.75). If SINO was not
performed, end INO would be performed with equal
probability (for example, 0.125) at either the left or
right end of the string.

CINO - [5], [121] | A CINO is applied with a specified inversion

Continuous INO probability p(i) to each new individual as the individugl
is created.

MINO - Mass | [5], [121] | Mass INO'’s are designed to eliminate the proliferatiop

INO of noninteracting subpopulations that accompanies
strict-homologue mating.

ShINO - Shadow | [5], [121] | ShINO is used to retard disruption.

INO

Deletion [5], [123] | The loss of a chromosome piece is called Deletion. It
can happen in several ways: one break near a
chromosome tip, two breaks followed by loss of a snjall
interior piece, two breaks followed by loss of both tip
and formation of a ring chromosome.

Duplication [5], [123] | Duplication may result when, following three
chromosome breaks, a segment of one chromosome
inserted elsewhere in the homologous chromosome @r
into a different chromosome.

Translocation [5], [123] | Breaks in two or more nonhomologous chromosomeg,

followed by reattachments in new combinations, is
called translocation if one or more segments ends uf
a different chromosome than it started. If the
rearrangement of chromosome parts is complete, wit
no leftover pieces, the translocation is reciprocal.

on

=)

49

Hybridization

[7]

An operation resembling a length-increasing crossovJﬁlr

between genomes from radically different genotypes,

each of which codes for a separate process activateq by

a distinct set of internal and external cues, which

produces a new, composite genome that contains the¢

code for both processes (frequently useful in genetic
programming).

Segregation

[5], [123]

To form a gamete, we randomly select one of each gf

the haploid (a single) chromosomes. This random
selection process is known as segregation. It effectiv
disrupts (i.e., with high probability) any linkage that
might exist between genes on different
(nonhomologous) chromosomes.

ply

Table 6. 1-D bin packing problem.

50

Classical formulation

Given a finite set of
elements E={g...,e}
with associated
weights W={w,,...w.}
such that Ow,<w*.
Partition E into N
subsets such that theg
sum of weights in
each partition is at
most w* and that N
IS minimum.

Characteris-tics

Although the
most remote
formulation from
compaction
among the
problems to be
studied, it is the
most studied of
the problems.
Therefore very
suitable for initial
explorations of
various GA
techniques.

Algorithms Short-
comings
Classical Results may
heuristics be quite far
[23,24] from the
minimum.
Stochastic Big CPU
(simulated time, local
annealing + | optima,
simple GA) | premature
[21,22] conver-
gence.

Goals

To
investigate
new genetic
ideas,
operations,
codings,
selection
methods, and
structures
(Table 1 -
Table 5).

Table 7. 2-D bin packing problem.

51

Classic formulation Characteris- | Algo-rithms | Short-
tics comings
T N

Given a finite set of Closest to Classical Results are

rectangular boxes compaction of | heuristics | likely quite

E={e,,...,e} with the "classical" | [23,24] far from the

associated sizes problems. A minimum.

W={(X1,,¥1,)--- (%Yo} good

such that 0x,y,<L*. formulation to

Place without overlapping start from in

all or part boxes from E | exploring Simple Big CPU

into the rectangular bin | GA’s for GA’s time, poorly

with sizes X>L*, Y>L* compaction. [22,25,78] | directed

such that the relation of improve-

the sum of box areas to ment.

the bin area is the

maximum.

Given a finite set of Generaliza- Classical Results are

rectangular boxes tion of the heuristics | likely quite

E={e,,...,e} with first [23,105] far from the

associated sizes formulation. minimum.

W={(X 1,,Y1,)-- (%Yo}

such that 0x,y,<L*.

Place without overlapping Simple GA | Nonhomo-

all boxes from E into N [20] geneous

rectangular bins with represen-

sizes X>L*, Y>L* such tation

that N is the minimum. decreases
CPU time.

Goals

To generalize
the
formulation:
sizes X and Y
can be
variables; a
new criterion -
-the minimum
of the bin
area; and new
kind of boxes
-- with
adjustable
sizes and/or
non-
rectangular.
To investigate
new genetic
ideas,
operations,
codings,
selections, and
structures.

Table 8. 3-D bin packing problem.

52

Classic formulation

Given a finite set of
rectangular 3-D
boxes E={g,....e}
with associated
sizes W={(x,,Y1,,Z,
)--(X,,YnZ,)} such
that 0,y,,z<L*.
Place without
overlapping all or
part boxes from E
into the rectangular
3-D bin with sizes
X>L*, Y>L*, Z>L*
such that the
relation of the sum
of box volumes to
the bin volume is
the maximum.

Characteris-
tics

Closest
formulation to
compaction in
the case of 3-
D integrated
circuit
technology
and MCM.
Probably a
good
foundation on
which to test
construction
of GA’s for 3-
D compaction.

Algorithms

Short-
comings

Classical Results are
heuristics. likely quite
[23,24] far from the
minimum.
Simple Complex
GAs crossover.
[82,22,26] Placement is
done in
layer-after-

layer manner
only.

Goals

To generalize the
formulation: sizes
X and Y can be
variables, and car
add a new
criterion --
minimization of
some function
f(X,Y), and a new
kind of boxes --
with adjustable
sizes and more
complex shapes.
Could aid in
investigating new
GA ideas,
operations,
codings, selection
mechanisms, and
structures.

Table 9. Compaction problem.

53

Classical
formulation

Characteris-
tics

Algorithms

Short-
comings

x and y coordinates
of elements can be
changed
simultaneously.

1-D formulation: See section Traditional Results are
Minimize the width | 2.1. approaches [| only locally
of the layout, while 2-40, minimal.
preserving the 66,67,124-

design rules and no 127]

altering the function

of the circuit; only

x coordinates of

elements can be

changed.

2-D formulation: See section GA’s [78] Many
Minimize the area | 2.1. and inequalities
of the layout, while simulated lead to long
preserving the annealing CPU time.
design rules and no [85] Simple
altering the function genetic

of the circuit; both operations.

Goals

To generalize thg
compaction
criteria (signal
delay
minimization)
and introduce
new operations
(9¢° turns and
mirror reflections
of elements).
Develop the
approach of [85]
for the GA. To
apply new GA
ideas, operations
codings,
selections, and
structures that
were successful
for the bin
packing
problems.

54

3. PROJECT DESCRIPTION

3.1. Project Statement

The focus of this research is on the solution of the integrated circuit layout compaction, bin
padking, and nesting problems on the basis Genetic Algorithms (GASs). It has to enhance the
linkage between symbolic levehodeling of the layout and the mask level design of hierarchical,
ultra fast, low power analog and logic circuits. Therent status of the GAs to physical design

link has several shortcomings. The dramatic increase in the complexity of VLSI designs has
driven a rapid conversion from hand design to the extensive use of computer-aided layout editor
to swport the layout process. Symbolic layout tools free the designers from design rule
considerabn and allow them to focus on the topology of the design, thus increasing design
productivity.

Compactionis the process of producing an area-efficgmgsical layout from a symbolic
layout while enforcing the separation (design rules), electrical connectivity, and user-specified
requirementslt is an activearea of research in automatic VLSI layout design. Layout compaction
is the process that takes an existing layout and produces a new layout while minimizing some
geometric aspect (usualljze and now it is also important to minimize the circuit delay). This
processpreserves the underlying circuit integrity and enforces design rule correctness. As the
compkxity of layout and demands to its quality increase, the corresponding increases in
executiontime and memory usage become a problem in many compaction systems if a good
solution has to be found. Because of this, compaction results proolycezh-evolution design
tools usually produce the layout with the non-minirae¢a and they are not easily flexible to the
change of the design rules.

3.2. Goals Statement

Most comgaction, bin packing, and nesting algorithms implemented today have a high time
computational complexity, @QI™), where m>1 and N is the problem size, and find non-optimal
solutions.Therefore, it is very important to try to reduce the size ofptioblem and find new
approaches that solve the compaction, bin packing, and nesting problems more effectively.
Theseproblems may be viewed abstractly as problems of optimization prélsence of
congraints. Genetic algorithms provide a means of guiding the search for fast good solutions.
This project is based on the premise that the methodology of GAs will produce more good
compaction The project goals are to develop new methodologies, abstractions, models, and
approaches which lead to more efficientlyitied and utilized CAD algorithms and tools. This
algarithms will include mechanism of natural evolution. The new methodologies will also
incorporateimportant improvements in genetic algorithms and physical layout. This is to be
accomplishedy defining a new GA methodology and developing a useful set of rules related
geneticalgorithms and layout VLSI systems. It is asserted that, even though more information
is to be considered during compaction, our strategy will tend to reduce layout design time due

55

to an evolutonary and adaptive to nature approach to generating layout in which a solution of
the compaction problem found at each steddse using a non-random, knowledge-based initial
population.

3.3. The Approach

3.3.1. The Representation

Let us first briefly examine the effects of the classic genetic operators on examples of
straightforwardstructures relevant to the compaction (bin packing) problems. We will show why
we think this is not the best structures for these problems.

First of such structures is the following straightforward encoding schieméjich we represent
explicitly the position of each element of the electronic circuit via x and y coordinates of (for
example) its top left corner. For example,

(X0,Y) (X2,Y2)--- (%0Yn)

would encode the solution where the first element (component or fragment of connection) is
located at the position {y,), the second at the position,x), and so on.

An advantageof this representation is the simplicity with which one can go from this
encodingto the positions of the elements on the layout. A disadvantage is tltabskever and
mutationoperations will producélegal solutions (violations of design rules) in most cases, and
the power of the GA will be seriously impaired. Moreoveisitlifficult to modify GA operators
SO as to preserve

1) the contact beveen to rectangular elements (fragments) of the same connection; and

2) "good" neighboring elements frothe standpoint of connectivity (i.e., keeping elements
with many connections between them "close" on the chromosome and on the |a4moother
disadvantage is thalements which are close to each other in the layout might be separated in
the chromsome. The standard two-point crossover would not tend to preserve valuable
schemata.

Second of the very straightforward representations is the order-based grsmitbme. Such a
representatiorsimply consists the set of possible permutations of the elements that correspond
to the electronic components, together with some heuristic "decoding” procedure for their
placemengiven aparticular ordering. The output of the heuristic mechanism is the actual layout
(placemenif components together with connections) corresponding to the given chromosome.
The decoding mechanism usually proceeds by considering the elements one byhenerder
specifid on the chromosome, and placing them and their corresponding connections in
accadancewith the design rules within the area available. Of course, the decoding procedure

56

doesnot, in general, guarantee optimal decoding of any particular sequence of component; for
example, it might involve a rule which tries to move each new component tastfer top and
left as is allowed by the components already decoded, using the design rules.

A disadvantage of this type of representation & the ordering crossovers will tend to
utilize context-dependent information out of context during recombination. Indeed, given the
mechanismof decoding the chromosome, it is clear that the meaning of a gene on the
chromosme depends heavily on all the genes that precede it on the chromosome. If, for
example, we swap two adjacent genes (elements) in the chnomogawill very likely lead to
widespread changes in the layout, for all elements "downstream™ of the first elentemtwd
swapped. So thestandard GA operations does not effectively preserve useful schemata ("building
blocks" are not used well).

In the prosed work, we will investigate a hierarchical chromosome representation (HCR) for
layout problems, including both compaction and bin packing problems. This representation is
desigred to preserve building blocks in chromosomes. An example from this family of
representationsvill be described briefly here. In most cases, we will consider only 2-level
representationsfor simplicity, but the results generally hold for a k-level HCR, k>2, as well.
The encoding scheme makes uses genes to represent groups ofetémm@nts. The rationale

is that in the problembeing considered, it is the groups of elements and their location which are
the meaningll building blocks, i.e., the smallest piece of a solution which can convey
information on the expected quality of the solution they are part of. This is crucial: indeed, the
very idea kehind the GA paradigm is to perform an exploration of the search space, so that
promising regions are identified, together with an exploitatibthe information thus gathered,

by an increased search effort in those regions. If, on the contrary, the encoding dockemet

allow the building blocks to be exploited (i.e. transmitted from parents to offspring, thus allowing
a continuous search in their surroundings) and simultaneously to serve as estimators of quality
of the regios of the search space they occupy, then the GA strategy inevitably fails and the
algorithm performs in fact little more than a random search or naive evolution.

In 2-level representatiomach chromosome might consist (for example) of several groups
G1,G2,..,Gmof elements (or subgroups for k-level HCR) and their relative (within the group)
coordnates. For instance, an example chromosome might be (for convenience of reading, we
put each group in a separate row or rows)

<
{[2] }X cpYaD), /I group G1 of one element, level O
{ [1(XuYD] [4(XaYD)]s [7(X2Y)] X 62Ye2)s Il group G2 of three elements, level 1
{ [3(Xa,Ya)]s [5(XsYs)] HX caYed, I group G3 of two elements

{ [6(Xe,Yo)], [8(XsYe)]: [9(XaYo)] X 6aYasa) I/l group G4 of three elements, level 1
>(0,0).

Fig. 4(a,b) illustrate this example.

57

A 3-level HCR chromosome might be

<
{ /I beginning of group G5, level 2
{ 2] }XgnYoD): /I group G1 of one element, level 0
{ [L(XuYD] [A(X0YD)] [7(X2Y7)] 3 X s2Ys2) } /] group G2 of three elements, level 1
HXesYes), /I end of group G5
{ /I beginning of group G6, level 2
{ [3(%3,Y3)], [5(Xs,Y5)] HX g2 Ysa)s /I group G3 of two elements, level 1
{ [6(%:Ye)], [8(Xe,Ys)] }X carYoa)s I/l group G4 of three elements, level 1
HXceYee): /I end of group G6
{ [9] X g7Yan) Il group G7 of one element, level O
>(0,0).

Fig. 4(c,d) illustrate this example.

Eachgroup of elements (subgroups) is a pietéayout -- elements and connections in some area
(or bin, for the bin packing problem). At the beginning, when we are giver satial layout

to be compacted, el group contains only one element. During the GA process, some groups
are merged into new, larger groups (of a higher hierarchical level).

3.3.2. The Genetic Operators

It is important that the primai@A search operators now work not with elements, but rather with
groups.

We can schematically describe an example crossover operator as follows:

1. Select at random some groups, Gf, from the first parent (father).

2. Selectat random some groups, Gm, from the second parent (mother), which do not
contain elements (groups) from GF.

3. For elements (or groups) that are not included into Gf or Gm, form a hierarchical
substructurausing heuristic algorithms, which can add expert knowledge and sound heuristics to
the process.

4. Apply steps 1 through 3 to the two parents with their roles permuted in order to
generate the second child (if desired).

By charging numbers of groups at steps 1 and 2, we can select the desired balance
betweenthe GA and the heuristic strategies. At step 3, we can, to the extend found to be
desirable, use valuable information extracted from the initial (Ssymdelout in order to form
groups. This information can also be used for forming the initial population, if desired.

It is also interesting to noteat some undefined parameters of the heuristic algorithm can
be treded as another set of variables for the GA to optimize. In particular, one of the authors

58

() =

DIOIGIOIOIOIONS

@ (b)

G6 G3
3 5
i 6 8 [
7 \6471

(© (@

Fig. 4. Examples of HCR

[16] has developed several procedures for systematically extending arbitrary order-based
(permutdion-type) operators so as to search simultaneously for optimal values of a number of
ordinary binary mapped, fixed-point variables. The GA architecture described below can, we
believe, make effective us# this capability to improve the performance of the heuristics as it
searches for optimal positions of the elements in the layout.

A mutation operator also should work with groups rather than elements. A general
strategyfor this operator is the "elimination” of an existing group, after which each element
(subgroup) of the group becomes a separate group, or is redistributed among remaining
subgroups.

59

For the poposed representation, we can use as the decoding mechanism (and for
implemening step 3 of the crossover) one of the existing silicon compilers [2], or at least the
methods of such a program. A silicon compiler uses a similar representation ote aid
it finds coordinates for each element (group) and each connection between elements (groups).

During each step of this compilation, two or more groups are merged inteeangroup,
with simultaneous determination of relegicoordinates of elements and connections within the
group formed. Finally, all groups are merged into one, which represent the whole layout.

3.3.3. The Fitness Function
The simplest fitness functiongFo use to estimate the quality of group G (or thelaho

layout) is the ratio of the area of theogp layout which is effectively used (not wasted) to the
whole area, A of the group layout:

where A, is the "dead" area of the group (the area that is not occupied by elements or
connections), 0<f)<1. (The higher the fitness, the better the layout.)

As work progresses it is expected that other terms willduied to the fitness function, reflecting
other desired qualities of the solution sought, and compensating for any undesiredaffetts
to be introduced by the heuristics employed. However, the area efficieexydasted to remain
a key element of the fitness function.

3.3.4. The Parallel GA Architecture

One of the authors, together with his graduate students, has been investigating various
architecturedor parallel and distributed GA’s for ovéen years [17-19]. He first realized the
benefitsof non-panmictic breeding in GA search in 1976, waerMSU Ph.D. student revealed

to his doctoral committekis mathematical proof that group selection was possible using ordinary
Darwinian principles, so long as isolated ("island") subpopulations with only infrequent
immigration were provided.

This has led to a succession of distributed and parallel GA architecture implementations,
including five software systesnembodying different GA tools and different parallel/distributed
architectues. Our GA Research and Applications Group is currently using (and making
available) three of these sets of research tools. The first is for micro-grainediparabbased

on GENESYS,and most effectively used on Unix-based symmetric multiprocessors, although it
may also be run on distributed workstations. It holds little interest for solving of the most
difficult problems, astienables only a hardware speedup of the solution of a single-population
GA problem.

60

The second is for island parallelism, is based on GAUCSDx.x, and designed for loosely coupled,
heterogeneaas Unix workstations. It can be run in a "polite” mode in which any workstation
checkpoing and "dies" whenever a user sits down at the console, and the system is extremely
tolerant of failures/reboots of any nodes.

The third is also for island parallelism, and runs not only on Unix workstations, but also on
arbitrary networks of PC clones, so long as a shared file space is availablat{dri€apability
wasdeveloped particularly to allow our collaborators in Russia and China accegartllel GA
toolkit). To facilitate its use by remote users, it was developed starting from tlversion of
Goldberg’sSimple Genetic Algorithm (as presentsal effectively in his introductory book [5]),

but completely rewritten and extended manyfold. This system, called the GALOPP System
(GeneticAlgorithm Optimized for Portabilitand Parallelism), is now approximately 30,000 lines

of code, features a large variety of crossover operators, selection methods, performance and
diversity measures, and a flexible scheme for inter-population communication. The user can
specifya problem to solve using a template provideddbwyg as little as filling in an objective
function, or can exert tight control over the algorithm through a series of skeleton callback
functions, all without modifying any source code except the user application file.

The primary tool for this project will be the latter system, running primarily in a distributed
workstaton environment. The parallel architecture to be used has been dubbed the "island
injection Genetic Algorithm”, or iiGA. It utilizes subpopulations organized into three or more
"layers,"in which each higher layer represents a higlegree of abstraction of the problem (in

this case, forexample, higher-level groups). Migration of individuals, when it occurs, is usually
performedprimarily within each layer, however, individuals can also migrate from a higher layer
to a lower layer (but not in the other direction). When this occurs, the representation is
remappediy desegregating groups into their component constitaémite lower layer. The lack

of "back ®ntamination” means that the higher-level subpopulations are able to act as a
continuirg source of diversity and good high-level building blocks for the lower layers’
populations,immune to the contaminating influence of the lower-layer populations to direct
search toward the local suboptimal solutions they have found.

The iiGA architecture is not required for relatively simple optimization problems, but the
comgexity of the compaction task easily warrants such an approach. A great deal of
expaimentation must be done to determine the best combination of representation/operator
definition/selectionmethod/fitness function/parallel architecture for a class of bin packing and
conpaction problems. However, the lessons we have learned in applying the iiGA to problem
of composite material structures optimization (2-D and 3-D)[19], lowest-energy molecular
configurations, and classification of high-dimensionality empirical data, will serve well in
facilitating progress on the bin packing and compaction problems.

61

3.4. Sequence of Problem Refinement

Work on GA achitecture and tuning can progress at the same time as a sophisticated package
for decoding bromosomes into full-blown layouts is being developed. As envisioned, the GA
work would proceed in three partially overlapping stages:

Task 1

Objective

Significance

Approach

Task 2

Objective

Significance

GA design methodology development for the hierarchical chromosome
representation (HCR).

To develop the k-level HCRyhich can be applied to the bin packing and layout
VLSI problems. To develop a formal definition and structure for a new
representatiofHCR), correspondin@A operators, and GA design methodology,
which is based on HCR and incorporates heuristics and expert knowledge.

This new design methodology and HCR will profit from the many significant
develpmentsin GA theory and practice made by our group and others, in
providing a basis for effective solving of compaction, bin packing, and nesting
problens. This is very important, because the problems are NP-hard and
reasonableapproximation algorithms cannot guarantee solutions that are near to
optimal for many practical situations [25].

Our approach is to develop a hierarchical description of the chromosome, in which
eachgrowp (node of HCR) represents a building block, and corresponding GA

operators. The work is based on new results in GAs -- new genetic operations,
enadings, selection methods, and structures (Table 1-Table 5) -- which can

incorporate heuristic algorithms, domain knowledge, and local hillclimbing.

Bin packing and nesting problems.

To investigate new methodology and some new GA ideas for the 1-D, 2-D, and
3-D bin packing and 2-D nesting problems.To generalize the formulation of the
2-D (3-D) bin packing problems by allowing sizes of the bin be variables and

introducinga new type of boxes -- non-rectangular and with adjustable sizes --
and a new criterion: the minimum bin area (volume).

Thes generalizations make the formulation of the 2-D (3-D) bin packing
problems closer to the compaction problem and the nesting problem. These
approachesvill be usedfor improving the solutions of the 2-D (3-D) bin packing
problems,and these ideas will be incorporatett used in fostering development

of compaction GAs for the layout of real VLSI systems and for addressing nesting

Approach

Task 3

Objective

Significance

Approach

Task 4

Objective

62

problems.

We will use our methodology and HCR in a series of experiments with tailored
representations in 2-D (3-D) bin-packing and nesting problems. We witirexp
some new schemes for selection: random with pressure and random-direct
selecion, and will investigate new (or newly optimized) genetic operations,
encodingsselection methods, and structures. (See Table 1 - Table 5). We will
investigatethese effects of various parallel G#chitectures, including especially
our own "island injection GA" architecture, which appears to be perfectly
"matched" with the HCR, on the solution of these problems.

Module placement (ssmplified compaction) problem.

Developmenbf and experimentation withtaghly simplified decoding and fitness
function, based on tracking only thrumber of connections between each pair of
blocks, but abstracting the details of routing the connections.

This apporoach will be used for more effective solving of the so-called module
placement problem [2], as an approximation to the @il 3-D) compaction of
the 2-D (and 3-D) layouproblems. It will create the basis for extension of these
resultsto the compaction problem. Moreover, thi®blem is important in itself,
and practically all industrial CAD systems include some tools to address it.

We will use the proposed GA methodology based on HCR. We will attempt to
producegood placement using GAs with HCR. Wél accomplish several serials

of expeiments to find optimal hierarchical structure parameters and values for
adjustable GA parameters. Ougaidithm is to be also in progress in making the
geneticoperators robust to quantity déta, variation in dimensions of boxes, and
variation in the aspect ratio of the bin.

Compaction problem.

Devebpment of a silicon-compiler-logic-based compaction algorithm, and
experimentation with this representation oal rgarticularly, the most important
fragmentsof some modern types ®LSI systems) and benchmark problems. To
investigate new genetic ideas, operations, encodings, selection methods, and
structures that were successful for solving the bin packing and nesting problems
in order to create a new compaction methodology on the basis ch@Aeceive
better compaction solutions.

63

Significance It is expected that the new GAethodology will produce a better packing density
of the layout, smaller die area of the layout, and smaller signal delays along
critical paths. It has to be done ma#ectively than another techniques. This is
very important, becausthe problem is NP-hard. Improvement of the density and
the layout area will result in improving practically all characteristics of the VLSI
system.

Approach We will create new GA operators on the basis of HCR and silicon compiler
merge-algorithms. We will consider a generalized foatoh of the compaction
including the objective function of the circuit performance. We will extent the
conpactionoperations by using 9@urns and mirror reflections of modules and
groups.We will investigatethe possibility of incorporating the simulated annealing
approach [85] into GA methodology foeaing with compaction. Our crossover
operdor will produce only solutions without design-rule violations and in this
way, redu@ tremendously the execution time. It can be based in part on some
ideasdeveloped in [128-130]. Using important information of the initial layout
to generate the initial population will also be exploited. We dallexperiments
to find an effective and efficient structure for th€R|, and will search for good
settings for GA parameters.

3.5. Contribution and Impact

The reallts of this research effort enhance design automation frameworks and specific
designmethodologies in seversignificant ways. First, the development of a useful set of genetic
operationsyules and design oriented models representing the l&youery high speed and low
power integrated circuits has the potential to improve the performance of both the designs and
algorithms. Second, research and potential discoveries relating to GAs for the compaction
optimization problem will have an impact on GA development in general. Applying genetic
algorithmsfor compaction and bin packing is likely to generate high-quality solutions to these
problems and to other knowledge-oriented tasks in whiclolifexts or events to be sequenced
are unique.

64

4. BIBLIOGRAPHY

[1] Chu, N.-A., Dardy, H., "A Survey of High Density Packaging for High Performance
ComputingSystems" Journal of Microelectronic Systems Integration, Vol. 1, No. 1, pp.
3-27, 1993.

[2] Physical design automation of electronic system, edited by Bryan T. Preas and Michael
J. Lorenzetti. The Benjamin/Cummings Publishing Company, Inc., 1988.

[3] Thomas Lengaueombinatorial Algorithms for Integrated Circuit Layout. John Wiley
& Sons, Inc., 1990.

[4] Holland, J. H., Adaptation in Natural and Artificial Systems. An Introductory Analysis
with Application to Biology, Control, and Artificial Intelligence. University of Michigan,
1975.

[5] Goadberg D. E., Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Publishing Company, Inc., 1989.

[6] Handbook of Genetic Algorithms, Edited by Lawrence Davis, Van Nostrand Reinhold,
New York, 1991.

[7] Sannier, A. and E. Goodman, "Genetic Learning Procedures in Distributed Environments,"
Proc. of the 2nd Int. Conf. on Genetic Algorithms and their Applications, Lawrence
Erlbaum Associates, 1987.

[8] Punch, W.F., Goodman, E. D., et al, "Further Research on Feature Selection and
Classification Using Genetic Algorithms"Proc. of the 5th Int. Conf. on Genetic
Algorithms, Urbana-Champaign, July 1993, pp. 557-564.

[9] Kureichik, V. M., Liah, A. V., "Parallel evolutiorf genetic) algorithm of graph division,"
Proc. USSR Conf. Graphs Algorithms in CAD, Academy of Sciences , Novosybirsk, 1989,
(in Russian).

[10] Kureichik, V. M., Lebedev, B.K., Liah, A. V., "Problems of Evolution Adaptation in
CAD", Novintech journal, No. 3, Moscow, 1991, (in Russian).

[11] Kureichik, V. M., "Genetic Algorithms in CAD,"Proc. Russia Conf. Al in CAD,
Gelendzik, September 1993, (in Russian).

[12] Kureichik, V. M., "Evolution Simulating and CAD Systems of ComputeR,6c. Int.
Conf. Problems of CAD Systems, Gurzuf, Ukraine, 1993.

[13] Kureichik, V. M., Mizuk, N. V., Liah, A. V., "Tasks of Evolution Modeling in Intellectual
CAD", Proc. Int. Workshop, CAD-93, July 1993, Moscow, Russia.

[14] TetelbaumA.Y. "Estimation of the Layout CharacteristicMathematical and Computer
Modeling, Vilnus, 1987, No.2.

[15] Tetellaum, A.Y. "Hierarchical Approach to VLSI Circuit DesignNicroElectronics,

Moscow, 1981, No.2 (50).

[16] Goodman, E.D.An Introduction to GALOPPS -- The "Genetic Algorithm Optimized for
Portability and Paralleism" System, Cag Center Technical Report # 940401, Michigan
State University, May, 1994, 58pp.

[17] Goadman, E.D. and Sannier, A.P., "Genetic Learning Procedures in Distributed
Enviromrments,"Proc. Second Int’| Conf. on Genetic Algorithms and their Applications,

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

[27]

[28]
[29]
[30]
[31]
[32]
[33]

[34]

65

Laurence Erlbaum Associates, Inc., Cambridge, MA, 1987.

Punch,W.F., Goodman, E.D., Pe¥]., Enbody, R., Lai, C.-S., and Hovland, P., "Further
Researclon Feature Selection and Classification Using Genetic Algorithianeg. Fifth
Int'| Conf. On Genetic Algorithms and their Applications, Morgan Kaufmann Publishers,
Inc., July, 1993, pp.557-564.

Lin, S.-C., Punch, W.F., arfdoodman, E.D., "Course-Grain Parallel Genetic Algorithms:
Categorizatiorand New Approach,/EEE Conf. on Parallel and Distributed Processing,
October, 1994, (accepted for publication).

Fakenauer,E., Delchambre, A., "A Genetic Algorithm for Bin Packing and Line
Balancing,"Proc. of the 1992 |EEE International Conf. on Robotics and Automation, vol.

2, Piscataway, NJ, 1992, pp. 1186- 1192.

Kao, C.-Y., "A Stochastic Approach for The One-Dimensional Bin-Packing Problems”,
Proc.,Int. Conf. on Systems, Man, and Cybernetics, pp. 1545-1551, Chicago, October,
1992.

PargasR. P., Jain, R., "A Parallel Stochastic Optimization AlgorifomSolving 2D Bin
PackingPrablems"”, inProc. 9th. Conf. on Al for Applications, March, 1993, Orlando,
Florida, pp. 18 - 25.

Coffman, E. G. Jr., Garey, M. R., and Johnson, D.[3ynamic Bin Packing"SAM J.
COMPUT. vol. 12, No. 2, May 1983, pp.227-258.

Baker, B. S. and Schwarz, J. S., "Shelf Algorithms For Two-dimensional Packing
Problems",Sam J. COMPUT. vol. 12, No. 3, August 1983, pp.508-525.

D.Smith, "Bin Packing With Adaptive Search,” iRroc. 1st Int. conf. on Genetic
Algorithms and their Applications, July 1985, pp.202-207.

Lin, J.-L., Foote, B., Pulat, S., at. alHybrid Genetic Algorithm for Container Packing
in Three Dimensions", iRroc. 9th. Conf. on Al for Applications, March,1993, Orlando,
Florida, pp. 353 -359.

Fujita, K., Akagji, S., Kirokawa, N., "Hybrid approach for optimal nesting using a genetic
algorithmand a local minimization algorithm”, iroc. of the 19th Annual ASME Design
Automation Conference, part 1, New York, 1993, pp. 477-484.

Dyckhoff, H., "A typology of cutting and packing problem<£European Journal of
Operating Research 44, 1990, pp.145-159.

Cheok,B. T., and Nee, A. Y. C., "Algorithms for nesting of ship/offshore structural
plates,” InProc. Advances in Design Automation, vol.2, ASME 1991, pp.221-226.

Jain, P., Fenyes, P., and Richter, R., "Optimal blank nesting esiulated annealing",
in Proc. Advances in Design Automation, vol.2, ASME 1991, pp. 109 - 116.

Dunlop, A.E., "Symbolic layout IM: the translation of symbolayouts into mask data,"
Journal of Digital Systems, vol.5, no.4, pp. 429-451, 1981.

Wolf, W., Two-dimensional Compaction Strategies, Ph. D. thesis, Stanford university,
March 1984.

Dunlop, A.E., "Symbolic layout IM: the translation of symbolic layout into mask data,"
Proc. 17th Design Automation Conf., pp. 595-602, ACM/IEEE, 1980.

Boer, D.G., "Symbolic layout compaction benchmarks - resullsgest Intl. Conf. on

[35]
[36]

[37]

[38]

[39]
[40]
[41]
[42]
[43]

[44]

[45]
[46]
[47]
[48]
[49]
[50]
[51]

[52]

[53]

66

CAD, pp. 209-217, October 1987.

Doenhardt, J., and. T_engauer, "Algorithmic aspects of one-dimensional layd&EE
Trans. on CAD, vol. CAD-6, no.5, pp. 863-878, IEEE, 1987.

Schlag,M., Y.Z. Liao, and C.K. Wong, "An algorithm for optimal two-dimensional
compaction of VLSI layouts,Integration, vol.1, no.2, 3, pp.179-209, September 1983.
Bumns, J.L., and A.R. Newton, "Efficient constraint generation for hierarchical
compadbon,” Proc., Intl. Conf. on CAD, pp. 197-200, IEEE Computer Society, October
1987.

Bamji, Cyrus S., and Varadarajan Ravi, "MSTC: A Method for Identifying
Overconstraintduring Hierarchical CompactionProc. 30th DAC, pp.389-394, June
1993, ACM/IEEE.

Boyer,D. G., "Split grid compaction for a virtual grid symbolic design systdbngest

Intl. Conf. on CAD, pp.134-137, November 1987.

Tan, D., and N. Weste, "Virtual grid symbolic layout 198Pfoc. Intl.Conf. on CAD,
pp.192-196, October 1987.

Boyer, D.G., and N. Weste, "Virtual grid compaction using the most recent layers
algorithm," Digest Intl. Conf. on CAD, pp.92-93, September 1983.

Akers, S.B., J.M. Geyer, and D.L. Roberts, "IC mask layout with a single conductor
layer,"” Proc. 7th Design Automation Workshop, pp.7-16, 1970.

Dao, J., Matsumoto, N., Hamai T., Ogawa, Mgri, S., "A Compaction method for full
chip VLSI layouts”,Proc. 30th Design Automation Conf., pp. 407-412ACM/IEEE, 1993.
Pan, P., Dong, Sai-Keung, and Liu, C.L., "Optimal graph constraint reduction for
symbolic layout compaction”,Proc. 30th Design Automation Conf., pp. 401-406,
ACM/IEEE, 1993

Kingsley, C., Earl: An Integrated Circuit Design Language, M.S. Thesis, California
Institute of Technology, June, 1982.

Hedges, T., W. Dawson, andE/'Cho, "Bitmap graph build algorithm for compaction,”
Digest Intl. Conf. on CAD, pp. 340-342, September 1985.

Hedlund, K.S., "Electrical optimization of PLAs,Proc., 22nd DAC, pp.681-687, June
1985.

Burns, J.I.,, and A.R. Newton, "SPARCS: a new constraint- based IC symbolic layout
spacer," translEEE Custom Integrated Circuits Conf., pp. 534-539, IEEE, May 1986.
Mehlhorn,K., Data Sructures and Algorithms 2: graph algorithms and NP-compl eteness,
Springer-Verlag, Berlin, 1984.

Lengater, T., "On the solution of inequality systems relevant to IC-layaldifnal of
Algorithms, vol.5, pp.408-421, 1984.

Cook, P.W., "Constraint solver faggeneralized IC layout,'BM Journal of Research and
Development, pp. 581-589, September 1984.

Liao, Y.-Z., and C.K. Wong,"An algorithm to compact a VLSI symbolic layout with
mixed constraints,'|EEE Trans. on CAD of Integrated Circuits and Systems, vol.CAD-2,
no.2, pp.62-69, 1983.

Van Der Woude, M., and X. Timermari§ompaction of hierarchical cells with minimum

[54]

[55]

[56]
[57]
[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

[66]
[67]
[68]
[69]
[70]

[71]

67

and maximum compaction constraintBroc., Intl. Symposium on Circuits and systems,

pp. 1018-1021, 1983.

Lo, C-Y., R. Varadarajn, and W.H. Crocker, "Compaction with performance
optimization,"Proc.,Intl. Conf. on Circuits and Systems, pp.514-517, 1987.

Kedem, G., and H. Watanabe, "Graph-optimization techniques for s-2 IC layout and
compaction,"|EEE Trans. on CAD of Integrated Circuits and Systems, vol. CAD-3, no.1,

pp. 12-20, 1984.

EntenmanG., and S. W. Daniel, "Aully automatic hierarchical compactoRtoc., 22nd
DAC, pp. 69-75, ACM/IEEE, June 1985.

Reichelt,M., and W. Wolf, "An Improved cell model for hierarchical constraint-graph
compaction,"Digest Intl. Conf. on CAD Design, pp. 482-485, September 1986.
Mosteller, R.C., A.H. Frey, and R. Suaya, "2-D compaction: a Monte Carlo method,"
Proc., Conference on Advanced Research in VLS, pp. 173-197, MIT Press, 1987.

Lee J. F., and Tang, D. T., "HIMALAYAS - a hierarchical compaction system with a
minimized constraint set,” IBM Research Report, T. J. Watson Research Center,
Yorktown Heights, Ny, 1992.

Marple, D., "A hierarchy preserving hierarchical compactor,"Piroc. 27th DAC, pp.
375-381, 1990,ACM/IEEE.

Wolf, W. H., Mathews, R. G., Newkirk, J. A., and Dutton r. W., " Algorithms for
optimizing two-dimensional symbolic layout compactionEEE Trans. on CAD of
Integrated Circuits and Systems, vol. CAD-7, no. 4, pp. 451-466, April 1988.

Shin, H., Sangiovanni-Vicentelli, A. L., and Sequin, C. H.., "Two-dimensional module
compactorbasedon zone-refining,"” irProc. Intl. Conf. on Computer Design, 1987, pp.
201-203.

Wolf, W., "An experimental comparison of 1-D compaction algorithms", pp.165-180 in
1985 Chapel Hill Conf. on VLS, Computer Science Press, Rockvile, Md, May 1985.
Bamij, C. S.,and Varadarjan, R.,"Hierarchical pitch matching compaction using minimum
design", inProc. 29th DAC, pp. 311-317, 1992, ACM/IEEE.

Yao, S-Z., Cheng, C.-K., Dutt, D., Naxar, S., and Lo, C.-Y., "Cell-Based Hierarchical
Pitchmatching Compactiodsing Minimal LP", inProc. 30th DAC, pp. 395-400, 1992,
ACM/IEEE.

Floyd, R., "Algorithm 97, shortest pathCommunication of the ACM, vol.5, no.6, p.345,
June 1962.

EichenbergerP.,Fast Symbolic Layout Trandation for Custom VLS Integrated Circuits,

Ph. D. thesis, Stanford University, April 1986.

Bullman, W. R., Davieu, L.A., Moscovitz, H. S., and O’Donnell, G. D., PANDA - a
module assembler for the IDA system, personal communication, September 1986.
Kollaritsch, P., and B. Ackland, "COORDINATOR: a complete design-rule enforced
layout methodology,Proc. Intl. Conf. on CAD, pp. 302-307, October 1986.

Maley, F. M., "Compaction with performance optimizatiorRroc. Intl. Conf. on Circuits

and Systems, pp. 514-517, 1987.

R. Ghandrasekharam, S. Subhramanian and S.Chadhury. "Genetic algorithm for node

[72]
[73]
[74]

[75]

[76]
[77]
[78]
[79]

[80]

[81]

[82]

[83]
[84]

[85]

[86]
[87]

[88]

68

partitioning problem and application in VLSI designEEE Proceedings, vol.140, No.5,
Sept.1993.

G. von Laszewski, "Intelligent Structur@perators for the K-Way Patrtitioning Problem",
In Proc. of the 4th Int. Conf. on Genetic Algorithms, San Diego,1991.

R.M. Kling and P. Banerjee, "ESP: Placement by Simulated EvolutiB&E Trans. on
CAD, vol. 8, No.3, March 1989, pp.245-256.

J.P. Cohoon, W.D. Paris, "Genetic PlacemelfEE Trans. on CAD, vol.6, No.6,
November 1987, pp.956-964.

J.P. Cohmn, S.U. Hegde, W.N. Martin and D.S. Richards, "Distributed Genetic
Algorithms for Floorplan Design ProblemTEEE Trans. on CAD, vol.10, No.4, April
1991, pp.483-492.

A.T. RahmaniN. Ono. A Genetic Algorithm for Channel Routing ProblemPinc. 5th

Int. Conf. on Genetic Algorithms, Urbana-Champaign,1993.

Y.L. Lin, Y.C. Hsu, F.S. Tsai, "SILK: A Simulated Evolution RoutdEEE Trans. on
CAD, vol.8, No.10, October 1989, pp.1108-1114.

M.Fourman, "Compaction of Symbolic Layout using Genetic Algorithms,'Pioc. 1st

Int. Conf. on Genetic Algorithms and their Applications, July, 1985, pp. 141-153.

Yao, A. C.-C., "New Algorithms foBin Packing",Journal of the ACM, vol. 27, No. 2,
April 1980, PP. 207-227.

Johnsa, D.S., Demers, A., Ullman, D.J., Garey, M.R., and Graham, R.L., "Worst-case
performancebounding for simple one-dimensionmcking algorithms"SAM J. Comput.,
vol. 3, No. 4, December 1974, pp. 299-325.

Corcoran A.L. and R.-L. Wainwright. "LibGA: A User-friendly Workbench for
Order-based Genetic Algorithm Research”, IfProceedings of the ACM S GAPP
Symposium on Applied Computing, Indianapolis, Indiana, February 14-16, 1993, pp.
111-118.

Corcoran,A. L. 111, Wainwright, R. L., "Genetic Algorithm for Packing in Three
Dimensions "Proc., of the 1992 ACM/S GAPP Symposium on Applied Computing SAC
'92, New York, 1992, pp. 1021- 1030.

EsbensenH., "Genetic algorithm for macro cell placemeritoc. European Design
Automation Conference -EURO-VHDL '92, Hamburg, Germany, 1992, pp. 52-57.

D.F. Wong, H.W. Leong and C.L. Lildmulated Annealing for VLS Design, Kluwer
Academic Publishers, Boston, 1988.

Hsieh, T. M., Leong, H. W., Liu, C. L., "Two-Dimensional Layout Compaction by
Simulated Annealing”, ifProc. IEEE International Symposium on Circuits and Systens,
June 1988, Espoo, Finland, vol. 3, pp. 2439 - 2443

EshelmanL. J., CarunaR. A., Schaffer, D. J.,"Biases in the Crossover Landsc#pet,

of the 3rd Int. Conf. on Genetic Algorithms, June 1989, Arlington, VA, pp. 10-19.

De Jong, K. A.Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D.
Dissertation, University of Michigan , Ann Arbor, MI, 1975.

Dauvis, L., "Applying adaptive algorithms to epistatic domaiRsbc. Sth Int. Joint. Conf.
Arti. Intell., Los Angeles, 1985, pp. 162- 164.

69

[89] Shang,Y. and Li, G.-J., "New Crossover Operators in Genghkgorithms", Proc. of the
1991 |IEEE Int. Conf. on Tools for Al, San Jose, CA, November 1991, pp. 150-153.

[90] Goldberg,D. E., and Lingle, R., "Alleles, loci, and the traveling salesman probfemot,

Int. Conf. Genetic Algorithms and Their Applications, Pittsburgh, PA, 1985, pp. 154-159.

[91] Oliver, I. M., Smith D. J.and Holland, J. H., "A study of permutation crossover operators
on the traveling salesman problenfloc. 2nd Int. Conf. Genetic Algorithms, Cambridge,
MA, July 1987, pp.82-89.

[92] Grefensette,J., Gopal, R., Rosmaita, B., Van Gucht, D., "Genetic Algorithms for the
Traveling Salesman ProblemProc of the 1st Int. Conf. on Genetic Algorithms and their
Applications, Pittsburgh, PA, July 1985, pp. 160-168.

[93] OosthuizenD., "SUPERGRANA connectionist approach to learning, integrating genetic
algorithmsand graph induction"Proc. of the 2nd Int. Conf. on Genetic Algorithms,
Cambridge, MA, July 1987, pp. 132-139.

[94] Schaffer,J.,Morishima, A., "An Adaptive Crossover Distribution Mechanism for Genetic
Algorithms, Proc, of the 2nd Int. Conf. on Genetic Algorithms, Cambridge, MA, July
1987, pp.36-40.

[95] SyswerdaG., "Schedule Optimization Usirgenetic Algorithms" irHandbook of Genetic
Algorithms, edited by L. Davis, van Nostrand Reinold, New York, 1991, pp. 332-349.

[96] Ackley, D. H., A Connectionist Machine for Genetic Hillclimbing, Kluwer Academic
Publishers, Boston, MA, 1987.

[97] Davidor, Y., "Analogous Crossover'RProc. of the 3rd Int. Conf. Genetic Algorithms,
Arlington, VA, June 1989, pp. 98-103.

[98] Louis, S. J., Rawlins, J. E., "Designer Genetic Algorithms : Genetic Algorithms in
StructureDesign,"Proc. of the 4th Int. Conf. on Genetic Algorithms, San Diego, CA, July
1991, pp. 53-60.

[99] Whitley, D., Starkweather, T., and Fuquay, D., "Sktheg Problems and the Traveling
Salesman: the genetic edge recombination operator”, Proc. of the 3rd Int. Conf. on
Genetic Algorithms and Their Applications, Arlington, VA, June 1989, pp. 133-140.

[100] Potts, J. C., Giddens, T. D., and Yad8wurya B., "The Development and Evaluation of
an Improved Genetic Algorithm Based on Migration and Artificial SelectidiEEE
Trans. on Systems, Man, and Cybernetics, vol. 24, No. 1, January 1994, pp. 73-86.

[101] Grefenstée, J. J., "Optimization of Control Parameters for Genetic Algorithi=EE
Trans. on Systems Man, and Cybernetics, vol. sms-16, No. 1, January/February 1986, pp.
122-128.

[102] ShahookarK., and Mazumder, P., "A Genetic Approach to Standard Cell Placement
Using Meta-Genetic Parameter OptimizatiofEEE Trans. on CAD, vol. 9, No. 5, May
1990, pp. 500-511.

[103] Cohoon,J. P., Hegde, S. U., Martin, W. N., Richards, D., "Punctuated Equilibria: A
Parallé Genetic Algorithm", Proc. of the 2nd Int. Conf. on Genetic Algorithms,
Cambridge , MA, July 1987, pp. 148-154.

[104] Eshelman]. J., "TheCHC Adaptive Search Algorithm: How to Have Safe Search When
Engagng in Nontraditional Genetic Recombination”, iRoundations of Genetic

[105]
[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

70

Algorithms, edited by Gregory J. E. Rawlins, Morgan Kaufmann Bhblis, San Mateo,
California, 1991, pp. 265-283.

J. E. Baker, "Reducingpias and inefficiency in the selection algorithm,'Firoc. 2nd Int.

Conf. on Genetic Algorithms, Cambridge, MA, 1985, pp. 14-21.

A. Brindle, Genetic algorithms for functional optimization, Ph.D. thesis, Univ. of Alberta,
Alberta, 1981.

D. Whitley, "Using reproductive evaluation to improve genetic search and heuristic
discovey," in Proc. 2nd Int. Conf. on Genetic Algorithms, Cambridge, MA, 1985, pp.
108-115.

J.J.Grefenstette and J. Baker, "How genetic algorithm work: A critical look at implicit
pamllelism," in Proc. 3rd Int. Conf. on Genetic Algorithms, San Mateo, CA, 1989, pp.
20-27.

T. Back and F. Hoffmeister, "Extended selection mechanism in genetic algorithms," in
Proc 4th Int. Conf. on Genetic Algorithms, San Diego, CA, 1991, pp. 92-99.

D. Whitley, "The GENITOR algorithm ansklection pressure: Why rank-based allocation
of reproductive trials is best," iroc. 3rd Int. Conf. on Genetic Algorithms, San Mateo,

Ca, 1989, pp. 116-121.

L. J. Eshelman and J. D. Schaffer, "Preventing premature convergence in Genetic
Algorithms by preventing incest,” ifProc. 4th Int. Conf. on Genetic Algorithms, San
Diego, CA, 1991, pp. 115-122.

D. E. Gddberg and J. Richardson, "Genetic algorithms with sharing for multimodal
function optimization,” in Proc. 2nd Int. Conf. on Genetic Algorithms, Cambridge, MA,
1987, pp. 41-49.

K. Deb and D.EGoldberg, "An investigation of niche and species formation in genetic
function optimization,” inProc. 3rd Int. Conf. on Genetic Algorithms, San Mateo, CA,
1989, pp. 42-50.

D. J. Cavicchio, "Reproductive adaptive plans,Pnoc. of the ACM 1972 Annual Conf.,
1972, pp. 1-11.

Bosworth,J., Foo, N.and Zeigler, B. PComparison of genetic algorithms with conjugate
gradient methods (CR-2093). Washington, DC: National Aeronautics and Space
Administration.

Fogel,L. J., Owens, A. J., and Walsh, M. Axtificial intelligence through simulated
evolution. John Wiley Publisher, New York, 1966.

Syswerda,G., "Schedule Optimization Using Genetic Algorithms", Hiandbook of
Genetic Algorithms, Edited by Lawrenc®avis, Van Nostrand Reinhold, New York, 1991,
pp. 332-349.

Liepins, G. E., and Potter, W. D., "A Genetic Algorithm to Multiple-Fault Diagnosis",
in Handbook of Genetic Algorithms, Edited by Lawrence Davi¥an Nostrand Reinhold,
New York, 1991, pp. 237-250.

Montana,D. J., "Automated Parameter Tuning for Interpretatio®yfthetic Images”, in
Handbook of Genetic Algorithms, Edited by Lawrence Davis, Van Nostrand Reinhold,
New York, 1991, pp. 282-311.

[120]

[121]

[122]

[123]
[124]
[125]
[126]
[127]
[128]
[129]

[130]

71

Fogarty, T.C., "Varying the probability of mutation in the genetigorithm”, inProc. 3rd

Int. Conf. on Genetic Algorithms, San Diego, CA, 1989, pp. 104-109.

Frantz,D. R. Non-linearities in genetic adaptive search. (Ph. D, University of Michigan),
DissertationAbstractsinternational, 33(11), 5240B-5241B, 1972, (University Microfilms
No0.73-11,116).

Bagley, J. D. The behavior of Adaptive systems which employ genetic and correlation
algorithms. (Ph. D, University of Michigan), Dissertation Abstracts International, 28(12),
510B, 1967, (University Microfilms No0.68-7556).

Mange,A. P., Mange, E. JGenetics: Human Aspects. Saunder College, Philadelphia,
1982.

Lakhani,G., andR. Varadarajan, "A wire-length minimization algorithm for circuit layout
compaction,"Proc., ISCAS-87, pp. 276-279, May 1987.

Lin, S.L., and J. Allen, "Minplex - a compactor that minimizes the bounding rectangle
and individual rectangles in a layoutProc., 23rd DAC, pp. 123-130, June 1986.

C. SechenVLS Placement and Global Routing using Smulating Annealing, Kluwer
Academic Publishers, Boston,1988.

S. Goto, eds.Design Methodologies, North - Holland Amsterdam - New York Oxford

- Tokyo, Vol.6,1986.

Tetelbaum, A.Y. "Force Embedding of a Planar Graph", Rroc. of 26th IEEE
Southeastern Symposium on System Theory, Ohio, USA, March 1994, pp. 2-6.
Tetebaum, A.Y. "Component Placement of VLSI Gate Array€lectronic Design
Automation, Kiev, 1991, No. 44.

Tetelbaum,A.Y., Shramchenko, B.L. and Demyanenko, O. "Automatic Placement for
ARM2-01 Workstation",Electronic Equipment and Computer Design Automation,
Moscow, 1992, No. 1.

