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1. INTRODUCTION

This technical report is prepared to record the preliminary work carried out in beginning
a research project on the solution of a group of related problems by means of Genetic Algorithms
(GA’s).  These problems include integrated circuit layout compaction, bin packing, and nesting.
The principal problem is compaction, with the others serving to illuminate and guide the
compaction work, as well as possibly receiving benefits from new tools developed.  Efficient and
near-optimal solution of the compaction problem will enhance the linkage between symbolic level
modeling of the layout and the mask level design of hierarchical (fragment-based), ultra-fast, low-
power analog and logic circuits.  The research goals are to develop new methodologies,
abstractions, and theory that lead to more efficiently defined and utilized Computer-Aided Design
(CAD) algorithms and tools for compaction, bin packing and nesting.  These new methodologies
will  incorporate important improvements in the handling of the physical, technological, and
optimization aspects of compaction.  More effective solution of the bin packing and nesting
problems can help to solve the compaction problem, as well as being valuable in their own right
for many practical problems.  This will be accomplished by defining a new approach to the use
of Genetic Algorithms (GAs)--for the compaction, bin packing, and nesting problems.

The research will concentrate mostly on the application area of high-speed, low-power
analog and digital circuits with clock rates up to 20 GHz. In many applications in this high
performance area, dramatically reduced chip area and signal delays are important design
requirements. The technology area of interest is multi-chip modules (MCM) based on current
or advanced silicon and GaAs technologies [1]. These technologies have the potential to deliver
improvements in power management, low voltage operation, low crosstalk interconnects, and
clock frequencies. The CAD area of concentration deals with the compaction, bin packing, and
nesting  problems and the solving of them based on GAs. These algorithms, using simple
encoding and recombination mechanisms, display complicated behavior, and they turned out to
be useful in solving some extremely difficult problems.

1.1. Report Overview

The rapid design of VLSI systems plays an important role in the progress of science and
technology.  In general, several important problems can be described in VLSI CAD systems.
They are typically design specification, functional design, logical design, circuit design, physical
design, and fabrication (technology design).  To link these problems, we must perform functional
and logical simulation, circuit analysis, extraction and verification.  Physical design automation
of VLSI systems consists of six major problems. They are partitioning, placement, assignment
and floorplanning, routing, symbolic layout and compaction, and verification.

Traditional solution of most of the VLSI physical design problems is carried out by
iterative methods [2,3].  These methods assume successive improvement of an initial variant,
which is obtained by one of the constructive algorithms through local replacement of elements.
However, these methods have a serious fault -- their use of a single variant of the initial solution.
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Besides, when a satisfactory approximate solution is obtained by the constructive algorithms, the
iterative algorithms stop at a local optimal solutions which could not be improved by further
iterative steps of the same process.  One way to improve the quality of solution is to incorporate
new methodologies into CAD systems.  In this work, we will develop and apply genetic
algorithms (GA’s), which have recently received widespread attention.

In 1975, J. Holland [4] described a methodology for studying natural adaptive systems
and designing artificial adaptive systems.  It is now frequently used as an optimization method,
based on analogy to the process of natural selection in biology.  The biological basis for the
adaptation process is evolution from one generation to the next, based on elimination of weak
elements and retention of stronger elements ("survival the fittest" -- those with the best
performance in the current environment).  Of course, over the longer term, it is not the strong
individuals themselves which ultimately survive, but rather offspring related to them genetically
in proportion to their reproductive fitness or success at reproduction.  The searching of this
representation space is performed using so-called "genetic algorithms" [4-6]. 

GAs are now widely recognized as an effective search paradigm in artificial intelligence,
image processing, job scheduling, pattern recognition and many other areas [4-6], particularly as
a method for gaining relatively good solutions to NP-hard optimization problems of high
dimensionality.  A GA maintains a population of strings (chromosomes) that encode candidate
solutions to a problem.  These strings are the analog of chromosomes in natural evolution.  A
fitness function defines the quality of each solution.  The GA chooses parent organisms from the
population in such a way that the more fit organisms are more likely to be chosen.  It applies
operators to generate offspring from the parents.  The operators are often loosely modeled on
biological genetic processes, however they are only very crude abstractions of the processes
known and understood to be significant in natural evolution.  Most commonly used operators are
mutation, which randomly makes a local modification in a chromosome, and crossover, which
combines genetic material from two parents.  There are many other operators such as inversion,
translocation, segregation, duplication, etc, which are sometimes, but not usually, used in GA’s
applied to optimization tasks. After performing these operations on individuals selected for
reproduction, the GA selects current population members, often those with lower fitness values,
to be replaced by the new offspring.  The more fit members of the population thus propagate and
combine to generate a population with generally increased fitness. 

There are many design choices in the construction of a genetic algorithm for a particular
problem.  On the basis of our previous experience [7-19] and the results of many other
investigations, we have found that GA’s can evolve good designs and produce good solutions to
many combinatorial problems.  In this work, we are going to develop a new construction that is
appropriate and effective for solving of the compaction problem in VLSI CAD systems, and bin
packing and nesting problems which are similar in many respects to compaction.  Compaction1

is the translation of a layout designed from a generic technology (such as CMOS) to a particular
fabrication technology’s design rules.  It translates the output of the detailed-routing phase into



3

mask data and has to convert the circuit elements into the appropriate mask elements and
minimize the chip area. The goal is to minimize the area of the layout, while preserving the
design rules and not altering the function of the circuit. This goal gives this process the name
compaction.  Compaction changes the geometry of the topological design to produce as small a
layout as possible while enforcing the design rules. In this work, we are going to develop a new
design methodology which incorporates some new genetic algorithm ideas that have been
developed recently for other problems, plus efficient encoding/decoding methods and useful
heuristic layout strategies.  This new methodology will contain significant developments in the
genetic algorithm approach and provide the basis for efficient suboptimal solution of compaction
problems and the related bin packing and nesting problems.  Our approach is to develop a
hierarchical chromosome representation (HCR) and appropriate genetic operators incorporating
various heuristics, and combine them with our "injection island" GA architecture (iiGA).   

In this work we investigate the HCR for the layout compaction and bin packing problems. This
representation will be designed to preserve building blocks in chromosomes, and the encoding
scheme will make genes represent groups.  The rationale is that in the problem being considered,
"it  is the groups of elements and their location which are the meaningful building blocks, i.e. the
smallest piece of a solution which can convey information on the expected quality of the solution
they are part of.  This is crucial; indeed, the very idea behind the GA paradigm is to perform an
exploration of the search space, so that promising regions are identified, together with an
exploitation of the information thus gathered, by an increased search effort in those regions.  If,
on the contrary, the encoding scheme does not allow the building blocks to be exploited (i.e.
transmitted from parents to offspring, thus allowing a continuous search in their surroundings)
and simultaneously to serve as estimators of quality of the regions of the search space they
occupy, then the GA strategy inevitably fails and the algorithm performs in fact little more than
a random search or naive evolution" [20].

Each group of elements (subgroups) is a piece of a layout -- elements and connections
in some area (or bin, for the bin packing problem). At the beginning, when we are given with
some initial layout to be compact, each group contains only one element.  During the GA process
some groups are merged in a new more large group (of a more higher hierarchical level).  It is
important that all the GA operations now should work not with elements but rather with groups.
For the proposed representation, we can use as the decoding mechanism one of the existing
silicon compilers [2], or at least the philosophy of this approach.  The silicon compiler uses a
similar representation of the circuit and finds coordinates for each element (group) and each
connection between elements (groups).  During this compilation, at each step, two or more groups
are merged into one new group, with simultaneous determination of relative coordinates of
elements and connections within the group formed. Finally, all groups are merged into one, which
represents the whole layout.

The formulation of the compaction problem to be solved is also to be refined, to take into
account an additional very important criterion --  circuit performance.  The standard compaction
problems are one-dimensional (1-D) and two-dimensional (2-D) compaction.  The bin packing
problems include one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) bin
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packing.  Nesting problems are usually 2-D (blank nesting, optimal nesting, or optimal cutting
problems).

In the 1-D bin packing problem, the goal is to minimize the number of bins that contain
a given set of weights, subject to a limitation of the total weight each bin can contain [21-24].
In the 2-D bin packing problem, the goal is to minimize the area of a single orthogonal bin by
packing arbitrary-dimensional rectangular boxes into it [25]. Overlapping of features is not
allowed, but there are no constraints on diversity or grouping. In the 3-D bin packing problem,
the goal is to minimize the volume of a single orthogonal 3-D bin containing arbitrary
dimensional 3-D boxes into it [22,26].  In the 2-D nesting problem, the goal is to maximize the
number of arbitrary-shaped elements embedded into a single orthogonal bin [27-30]. It is often2

allowed to turn the elements during the process.
Our methodology is expected to produce good solutions more efficiently than other

techniques.  This is very important, because the problems are NP-hard.  For example, reasonable
approximation algorithms for the bin packing problem can only guarantee to be within 22% of
optimal [25].  Our algorithm will first initialize a population of chromosomes in which each
chromosome represents the layout (compaction, bin packing, or nesting) as a HCR.  For this
representation, it is possible to develop a modified form of crossover, inversion, translocation,
and some other operators not previously applied to this class of problems.  The decoding
algorithm, based on a silicon compiler, takes any chromosome and forms a legal layout (packing).
We expect that our algorithm will advance the state of the art in making genetic operators robust
with regard to quantity of data, variation in dimensions of boxes, and variation in the aspect ratio
of the bin.

In the 2- and 3-D problems, we initialize a population of chromosomes (solutions) that
can be induced by the initial symbolic layout and in this way decrease incredibly the number of
possible initial chromosomes.  Our algorithm evolves these populations of individuals.  Each
individual is a string of genes representing some group of elements or subgroups and the
corresponding layout that can be obtained after the decoding procedure.  New individuals are
produced by a stochastic mix of the modification of classic genetic operators:  crossover and
mutation, specialized for solving hierarchical problems, and some other genetic operations
(inversion, translocation, etc.).  We propose to explore several alternative heuristic
operator/selection strategies, including ones we call "random with pressure" and "random-direct"
selection.  This will introduce less selection-induced variability.  These algorithms will be run
using the parallel architectures described below, as already developed by our group.

1.2. Research Tools and Validation

These ideas and objectives will be investigated in the framework of existing commercially
available and public domain tools, specifically, Mentor Graphics tools for design, and the
GALOPPS ("Genetic ALgorithm Optimized for Portability and Parallelism" System) (a highly
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a very flexible and portable GA system with roots in Goldberg’s SGA, but totally rewritten)
already developed by one of the authors and distributed to collaborators in GA research in 10
universities around the world. The use of the Mentor Graphics package will be a useful tie into
current CAD technology and is viewed as an essential tool to study the compaction.

Benchmark problems will be assembled for validation of the methodology developed.
This set of benchmark problems will come from the literature, from random generation according
to realistic characteristics, and from real chips, and will be used for comparison of our methods
with existing compaction techniques.  Several possible validation paradigms are referenced in
Section 2.  Specific details of the tasks and methodology which will be used to achieve the goals
of this research are provided in Sections 2 and 3 of this proposal.
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2. BACKGROUND
 
2.1. Introduction to Layout Compaction
 

The layout designer is driven by two conflicting demands. The first is to find the layout
with an area as small as possible, in order to minimize manufacturing cost and maximize circuit
performance.  The second is to create the layout quickly in order to minimize design time and
cost. The designer usually develops the layout during two major layout phases [2,31,32]:
     1. Topological design, after which the relative placement of components and wires are
defined.
     2. Geometrical design, after which the geometrical (physical) positions of all the layout
elements are defined.

The designer uses different design methodologies to solve the problems of these two
phases.  Symbolic layout and compaction are two closely related design methodologies that
encourage the separation of topological design and geometrical design and help to automate
geometrical design [2].

Symbolic layout allows the topological designer to work with the transistors, wires, and
cells as primitives, rather than manipulating the individual polygons used in fabrication.  A
symbolic layout can be drawn as a stick diagram, which uses line segments and components as
symbols, or as a layout display with wires and devices drawn as rectangles similar or identical
to those used in the layout.  The stick diagram may clarify the cell topology, while the layout
display gives the designer a feel for the relative sizes of layout elements.

The translation of the output of the detailed-routing phase into mask data must convert
the circuit elements into the appropriate mask elements .  It should ensure that all design rules
are met, while simultaneously minimizing the layout area.  This last goal gives this process the
name compaction [2,3].  Compaction changes the geometry of the topological design to produce
a small layout while enforcing the design rules. 

Compactors speed layout design by automating geometric design.  The designer gives the
compactor a preliminary layout.  The compactor moves components and wires in the plane to
optimize the layout (the first goal) and to correct it in accordance with the design rules (the
second goal).  The compactor usually moves subcells only in the plane, preserving the designer’s
topology for the cell. The designer can therefore have a great deal of control over the layout
without performing the work required to turn a sketch of a layout into a correct, space-optimized
design [33]. 

Compaction performs a translation from the graph domain into mask geometry.
Compaction is more than just an optimization problem.  Compaction is quite a difficult problem
not only from a combinatorial, but also from a systems point of view.  Advanced compactors aim
at separating combinatorial and technological issues as much as possible.  Compaction algorithms
use the information from the design-rule database to compute the mask features.  The structure
of information that the compaction algorithm has to extract from the design-rule database can be
quite complicated.  It involves not only simple numerical parameters, such as minimum distances
between features on different masks, but also connectivity information and electrical information.
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Most of the steps in the compaction process are made much simpler by working with a symbolic
description of the layout.  Combining compaction with symbolic layout creates advantages for
the computer-aided design developer as well.

2.2. Basic Definitions and Taxonomy of Compaction
 

Compaction algorithms may be classified along two basic axes, A and B [3,31,32]: 

A describes how components move during compaction;

B covers the algorithms used to position the components.

Algorithms from A can be divided into the following groups.
 
      A.1. One-dimensional (1-D) compaction.  In 1-D compaction, only the, say, x
coordinates of the mask features are changed.  This kind of compaction is also called x
compaction (y compaction is defined analogously).  The goal is to minimize the width of the
layout, while preserving the design rules and not altering the function of the circuit.

So, in 1-D compaction, components are moved only in the x direction or only in the y
direction.  Most steps of 1-D compaction can be done efficiently. In fact, they can be done with
almost linear-time algorithms [3,34].  A few versions of 1-D compaction are NP-hard [2,31,35].

      A.2. Two-dimensional (2-D) compaction. In 2-D compaction, both x and y coordinates
can be changed simultaneously in order to minimize area, i.e. in 2-D compaction, a single step
can move a component in both x and y.  In 1-D compaction, the cell is alternately compacted
in x any y, while in 2-D compaction components are selected to move as required to improve the
layout.

Most versions of 2-D compaction are NP-hard [34,36]. The difficulty of 2-D compaction
lies in determining how the two dimensions of the layout must interact to minimize the area. To
circumvent the intrinsic complexity of this question, some heuristic are used to decide locally
how the interaction is to take place [31-33].  These heuristics are sometimes referred to as
1.5-dimensional compaction [3,35].

Algorithms from B can be divided into the following two major types (groups)
[2,3,31,32].

   B.1.Constraint-graph algorithms. The constraint graph algorithm describes the required
connections and separation rules as linear inequalities, which can in turn be modeled as a
weighted, directed graph [36]. The constraint graph is used to find new positions for the
components, and the result is applied back to the layout.
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        B.2. Virtual grid algorithms. The virtual grid algorithm finds the subcell positions by
considering the layout to be drawn on a grid; it moves all components on a grid line together so
that adjacent virtual grid lines are as close as possible while satisfying all required separations
between the symbols on the grid.

 Modern designs are modularized hierarchically.  An example is the bottom level of the
hierarchy.  Optimizing leaf cell layout requires awareness of many interacting constraints and
complex cost functions.  Traditionally, this area of design has been left to human experts.
Hierarchical compaction works on cells that are constructed from other cells as well as primitive
layout symbols [37,38].  Any of these techniques can be made hierarchical by applying the
compaction algorithm to a leaf cell and then using the compacted cell in larger cell.  Hierarchical
compaction is also called cell assembly.  A variety of hierarchical compaction algorithms have
been developed for both constraint-graph algorithm and virtual grid algorithm compaction [39-
41].
 

2.3. Algorithms for Compaction.

The general procedure in compacting a cell is shown in Fig. 1 [2,3,31-35].  Each
iteration through the loop is a compaction step.  First, the layout is analyzed to determine the
spacing rules that must be obeyed.  Then the layout is compacted to satisfy those constraints. 
Finally, a wire length minimization algorithm is applied to the compactor’s solution to adjust
the positions of non-critical wires in the layout.

Compaction step         

�����������������	 		 		 		 	������������������������������������
Fig. 1. The compaction process.

2.3.1. Constraint-graph 1-D Compaction Algorithms
 

There are two basic approaches to the constraint-graph 1-D compaction algorithms:
compression ridges and graph-based compaction.

     Compression-ridge method. This method was pioneered by Akers [42].  In this
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approach, a region of empty space is identified in the geometric layout, which separates the
layout into a left and a right part.  Such a region is subsequently removed by translation of
the right part of the layout to the left by as much as the spacing constraints will allow.  This
step is repeated until no more compression ridges are found.
 Disadvantages: This method progresses from the top to the bottom of the layout.  This
progression amounts to a search through the layout with backtracking (if the compression-
ridge method cannot progress further) and thus is computationally complex.  Furthermore, it
finds only horizontally convex compression ridges.

The key to finding compression ridges is the representation of the empty space in the
layout by a directed edge-weighted graph, the tile graph [3,42].  The tile graph is constructed
as follows.  First the horizontal segments of the contours of the features are extended through
the adjacent regions of empty space.  This process divides the empty space between the
features into rectangular tiles.  The tile graph G=(V,E) has a vertex for each tile.  Special
vertices s and t represent the top and bottom sides of the layout.  Vertices representing
vertically adjacent tiles are connected with anti-paralleled edges.  Thus each anti-paralleled
edge pair corresponds to a horizontal segment separating two tiles.  The edges are weighted
as follows:  An edge e pointing downward receives the weight c(e), which is the width of the
corresponding tile.  An edge pointing upward receives the weight c(e)=inf.

The ordered 1-D compaction can be solved as follows [3,32]:
  Step 1: Find a maximum flow from s to t in G.    

Step 2: For all edges e from E that point downward, compress the tile corresponding
to e by the amount indicated by the flow along e. 

It was shown [3] that the preceding algorithm solves the ordered 1-D compaction with
d(1,1)=0, and p=id and without grouping constraints, as long as the initial layout is legal.  In
[3] they restrict their attention to compression ridges that correspond to paths in the tile
graph. They give an O(n log n) time algorithm for finding such a ridge that allows for the
largest decrease in layout width.  However, before compaction is complete, many compression
ridge may have to be found.  The advantages of the compression-ridge method are that the
compaction can be broken up into small steps and that it is possible to interleave compaction
in both dimensions.  This feature is especially important in an environment in which
compaction is done interactively, step by step.  The Akers compression-ridge method can be
applied in a virtual grid setting.
          
  Graph-based compaction.  This method turns compaction into a system of linear
inequalities that is subsequently solved using shortest-path methods [31,32,43,44].  The
compactor’s job is to recognize and enforce spacing rules while minimizing area.  Spacing
rules can be written as constraints (the Constraint-Graph Model). 

The positions of the components, represented as variables in the inequalities, are
represented by vertices in the graph.  Negative weights on the graph edges indicate that a
component is allowed to be to the left of another:  C can be at least -d units to the right of W
(or d units to the left), and  vice versa.  The edges representing these constraints form a cycle
in which the sum of the weights around the cycle is non-positive.
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The graph represents a 1-D compaction because all the variables in the constraints
represent positions in the same dimension.  The graph includes two artificial vertices, L and
U, which represent the lowest and highest positions in the cell, respectively.  L is a source of
the constraint graph, and U is a sink of the graph.  Values assigned to the vertices represent
positions of the cells in the dimension of compaction.  The minimum L>U distance is
determined by the longest path of constraints from L to U.  One can translate the longest path
problem into a shortest path problem by negating the weights of the edges.  One can view
1-D compaction as a linear programming problem:

    MINIMIZE         U - L
    subject to      - L + A > 0
                     - L + B > 0
                        - A + B > 4
                          etc.

The objective function of the linear program is U-L, the distance between the lower
and upper edges of the graph.  The simplex algorithm can perform such a search.  The
average number of iterations required for the simplex method is very nearly linear in the
number of constraints.

Constraint-graph leaf cell compaction

THE SHADOWING ALGORITHM [2,31-33,44,45]. The shadowing algorithm examines
the positions of cells to determine what constraints are redundant.  As shown in Fig.7, one can
imagine a region that contains cells B,C,D,... that must be constrained against cell A in x as
falling under a shadow cast from A.

The shadow’s maximum height is the height of A extended by the distance in each
direction. If  the shadow falls on a cell, that cell must be constrained against A; thus, we must
generate a constraint from B, C and D to A. 
 The shadowing algorithm describes how to generate the constraints on a cell from all the
cells below it or to its left.  The algorithm keeps the bounds of the shadow’s left edge in a
shadow "front".  The shadow is a list of edges, each of which has a position in the constraint
generation dimension and an upper and lower bound in the opposite dimension.  The shadowing
algorithm starts with the shadow extending from A to the cell’s left edge, then searches from
right to left cells that block portions of the shadow.  The function IN SHADOW returns true if
a cell’s right edge is in the shadow, which implies that it must both overlap at least one edge in
shadow-front in y and also be above that edge in x.  If the cell is in the shadow, the algorithm
adds a constraint from it to the sink and calls the update shadow procedure to modify the shadow
front so that one edge of the shadow coincides with the left edge of the cell that required it. The
shadowing algorithm moves from left to right.
 There are some difficulties in creating a robust implementation of shadowing. Some
components may move through each other during compaction, and the shadow must not be
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blocked until all cells that may enter the shadow have been considered.

   THE INTERVENING GROUP METHOD [45-47].  This method uses a simple heuristic
to eliminate many, but not all, redundant constraints, by remembering a path through the
constraint graph that provides a lower bound on the size of relevant constraints.
 The first function in intervening group method, CONSTRAINED, returns TRUE if the
constraint graph includes a path of constraints between two cells that satisfies the spacing rule
between them.  The second procedure in the method, GENERATE CONSTRAINT GRAPH,
considers each cell from left to right, generating constraints to the i cell from all previously
considered cells 1,...,i-1.  The speed with which the set of all constraint paths to a cell can be
tested and updated allows the algorithm to eliminate redundant constraints very quickly.

   PERPENDICULAR-PLANE-SWEEP ALGORITHM (PP shadowing algorithm) [35,37,48-
53]. The PP shadowing algorithm uses a scan line to perform a shadowing analysis.  X-dimension
constraints are generated by a vertical line that is swept from left to right across the layout.  In
design rule checking, because polygons do not move, only polygons within a fixed distance of
the scan line need be checked, but for compaction the scan line must collect arbitrary distance
elements.  Constraints are generated from one element’s right edge to another’s left edge.  A
right edge is added to the edge data structure and is checked to find left edges in the data
structure against which it must be constrained.  A left edge, because it blocks the shadow cast
by a right edge, causes right edges to be removed from the data structure.  The one-layer version
of the PP shadowing algorithm has a time complexity of 0(nlog(n)), where n is the number of
rectangles in the layout.
 Once physical connectivity and separation constraints have been generated, the constraint
set must be solved to find the longest path from L to U.  An iterative algorithm is usually used
on a constraint graph with cycles.  An edge can be used to define an ordering on the vertices it
connects.  All positive-weight edges are forward, as are any negative-weight edges that satisfy
the partial ordering defined by the positive-weight edges; any other edges are backward.  In an
iteration, the method first applies acyclic-longest-path to find vertex positions that satisfy the
forward edges, then it updates that solution to also satisfy the backward edges.  The algorithm
stops when a forward update/backward update iteration produces no change in the solution.  This
algorithm is of complexity 0(ve), but because constraint graphs have relatively few large strong
components, its average behavior is better.
  

Virtual grid algorithms

     VIRTUAL GRID LEAF CELL COMPACTION [34,39,40,54].  The model simplifies both
constraint generation and solution.  The virtual grid compaction system determines spacing rules
and assign coordinates simultaneously, avoiding the need for an intermediate data structure to
describe the constraints.
 Compaction starts by assigning the left-most virtual grid the mask position 0. The other
virtual grid lines are assigned mask positions in order by looking at the components that have
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already been placed.  The most commonly used method to find all the constraints that must be
satisfied is the most recent layers algorithm. 
 After both x and y compaction, virtual grid compactors use an xy compaction step to
reduce cell size.  The 1-D compaction model produces a rectangular barrier around a component.
The xy compaction step looks for adjacent components that can be moved closer together and
adjusts the positions of their virtual grid lines.  The xy compaction step is usually performed
simultaneously with the second x or y compaction, since it must look at the same constraints.
Because the virtual grid lines determine how components move, only one x and one y
compaction step are necessary.  Further x or y compaction will not reduce the cell size. 

   SPLIT-GRID COMPACTION [39,41]. This method allows objects on a virtual grid line
to move independently, but does not allow connections with steps. Split-grid compaction
produces a layout closer in quality to a constraint-graph algorithm compaction, at the cost of
more CPU time than required for simple virtual grid algorithms.

2.3.2. Two-dimensional compaction (2-D compaction)

2-D compaction is an extension of 1-D constraint-graph compaction.  As shown in Fig. 2, two
cells A and B can have 4 relative positions:  B can be above, below, left of, or right of A
[36,55].

                      B(x)>(A(x)+c) (right),
        B               A(x)>(B(x)+c) (left),
    B A B             B(y)>(A(y)+c) (above),
        B               A(y)>(B(y)+c) (below).

  (a) Layout.               (b) Constraints.

    Fig. 2. 2-D Compaction constraints.

In each case, some spacing rule determines the minimum distance required between them.
The minimum distance is expressed as a linear inequality. Left-of/right-of placement constraints
are expressed as functions of x-dimension variables, and above-below constraints are written in
terms of y-dimension variables.
 This formulation is a special case of mixed integer linear programming, which works on
linear constraints and 0/1 decision variables.  A simple insight helps us to discover algorithms
for solving these problems -- for any particular setting of decision variables, the selected
constraints form two 1-D constraint graphs, one for x and one for y.  Solution algorithms choose
settings for the decision variables (in effect selecting the relative locations of cells), solve the
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resulting 1-D compaction to get the cell positions, and evaluate the quality of the resulting layout.
 Kedem and Watanabe [55] used branch-and-bound search to solve a 2-D  constraint set.
Schlag et al. [36] allow all four possible placements of component pairs.  Their algorithm not
only searches through all possible compactions of a given planar topology, but also changes the
planar topology -- by moving a component from one side of a wire to the other, for instance. One
simple way to use this algorithm is to assemble 2-D compacted leaf cells using the 1-D
hierarchical compaction algorithms. The limitation of the algorithm is its high computational
complexity.

2.3.3. Constraint-graph hierarchical compaction 

There are two approaches to constraint-graph hierarchical compaction [15,32,36,55-62].
The first treats subcells as fixed, whereas the second allows subcells to stretch during
compaction.

   FIXED-CELL HIERARCHICAL COMPACTION.  This compaction is used in SPARCS
[2,37].  These programs’ model of subcell is the position of its ports and a protection frame used
to determine cell-to-cell spacing.  The protection frame includes material within the maximum
design rule distance on each layer; this material determines the subcell’s separation requirements.

    PITCHMATCHING [63-65].  Pitchmatching---stretching cells so they can be connected
by abutment---is simply recompacting the cells with additional ports to be at the same positions.
Hierarchical compaction with stretchable cells required the compactor to build a more complex
model of a subcell than that required for fixed-cell assembly.  The ideal model would contain
information about how the cell’s contents stretch during compaction -- how the ports can move
during compaction -- and information to determine the spacing required between the cell and
other cells. 

The port abstraction model fully characterizes the stretching behavior of the cell with a
much smaller constraint graph that includes only the ports as vertices and flexible protection
frame that describes the cells boundary.  A port abstraction consists of two constraint graphs, one
for x and one for y.  The vertices in each graph represent the ports.  The edges describe how the
ports can move during compaction.  The motion of the ports is determined by the components
and wires in the cell’s interior.  Because cells contain many fewer ports than components and
wires, the port abstraction is a greatly simplified model of the cell.
 The abstraction’s constraints are determined by computing a subset of the transitive
closure of the constraint graph.  Because the abstraction contains only port vertices, only the
longest path between ports need to be computed.  The simplest algorithm for calculating
transitive closure is Floyd’s algorithm [66], which takes O(v) steps irrespective the graph’s3

sparseness.  The Eic method [67] insures that each pair of components is constrained by either
an x or a y constraint.  The longest paths between all pairs of components and wires in the cell
are computed; if their ranges conflict in one dimension, then a constraint in the other dimension
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is introduced.  This method is robust, but costs much more to compute.
 Finding the spacing required between two subcells during hierarchical compaction is much
more complicated than finding the spacing required between primitive symbols, because
components in the subcell can move during compaction. The port abstraction does not contain
enough information to determine how cell-to-cell spacing changes as cells stretch, so most
systems use worst-case spacing between subcells.

    VIRTUAL GRID HIERARCHICAL COMPACTION [68,69].  Most virtual grid systems
perform a simple two-level hierarchical compaction.  First, all leaf cells are compacted, then all
cells are assembled into the final design by a pitchmatching algorithm.  During pitchmatching,
the mask positions of virtual grid lines in the cells are adjusted to stretch the cells for abutment.
Stretching subcells during virtual grid hierarchical compaction is best formulated as a simple
constraint problem.  The virtual grid compaction of the subcells determines the minimum
positions of their pins.  The minimum distance of each pin from the base of its subcell can be
written as a separation constraint, and a connection between pins can be written as an equality
constraint.  The resulting graph, after merging nodes connected by equality constraints, is acyclic
and can be solved with breadth-first search.

Once the port positions have been found, it can update the positions of the other virtual
grid lines for the subcells to maintain the required spacings.  The virtual grid model simplifies
the determination of cell-to-cell spacing -- the virtual grid allows the compactor to predict how
components along the boundary will move.  The CAD system PANDA [2,68] performs
cell-to-cell  spacing in two passes:  first, using worst-case spacing, then pushing cells closer
together based on a design rule analysis near the boundaries of abutted cells.  CAD
COORDINATOR [2,69] uses constraint-generation algorithms for leaf cell compaction, which
make feasible the compaction very large (10,000) cells.

2.3.4. Wire length minimization [40,41] 

The simplest algorithm for wire length minimization works directly on the compaction
constraint graph.  First the compaction constraints are augmented with constraints that maintain
the order of wire endpoints.  The augmented graph is solved by repeatedly applying the
minimization step.  A vertex is chosen that, when moved, will reduce the weighted sum of wire
lengths in the cell.  The wire length minimization algorithm is described as a linear programming
formulation of the problem, and solves it using network programming techniques.  Because the
optimum solution to a linear program occurs at the simultaneous solution of two or more
constraints, the wire length need be checked only at the ends of the vertex’s range.  When no
vertex can be moved to reduce total weighted wire length, the cell’s wire length is minimal.  An
algorithm that performs grouping and shearing operations to minimize total wire length has been
developed.

      INCREMENTAL CELL OPTIMIZATION [32,54,61].  The most incremental cell
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optimization methods are jog introduction -- adding a degree of freedom to a connection by
changing a wire segment to a z-shaped wire.  Let us consider two typical situations for adding
a jog.  In both cases, allowing the ends of the wire to move separately allows the components
to move closer together in y.  Automatic jog introduction occurs at the start of a compaction step
-- wires are selected for jogging and jogs are added, then constraint generation and solving
proceeds normally [70].
 Super-compaction [2,31-33] introduced methods for analyzing the critical path to find a
small set of jogs sufficient to reduce the cell size.  Finding a set of jogs that breaks all critical
paths is equivalent finding a cut-set of the critical path graph.  Critical path analysis also allows
us to consider geometric reorganizations that break the critical path by moving cells to eliminate
separation constraints.

2.4. Layout Approaches Based on Genetic Algorithms   

 In this proposal, we describe various approaches to physical design of VLSI systems
based on genetic algorithm methodology, in order to show the utility of the GA approach to
layout design. 

Partitioning Problem

Let us define the VLSI partitioning problem as follows.  We can represent a VLSI system
as a hypergraph H=(X,E), where X represents the set of nodes and E represents the set of
hyperedges.  Let P={P(1),P(2),...,P(l)} be the set of partitions of the H.  Let each partition P(i)
contain the elements x(i); that is, P(i)={x(1),x(2),...,x(k)} and each x(i) belongs to X.  The cost
function is the number of hyperedges (connections) between different partitions P(i).  Our task
is to find a partitioning that minimizes the cost function.  Genetic algorithms start with an initial
population of partitions (randomly generated or generated by some constructive method).  They
evaluate this population based on the cost function.  Then they select some members of the
population and perform genetic operators (crossover, mutation, inversion, translocation and/or
others).  Applying GA’s allows one to find better solutions for partitioning problems [71,72] than
those typically found by other methods.

Placement Problem

The placement problem of standard cells on the VLSI chip is to arrange a given set of
standard cells of common or variable height and width on the chip surface.  The placement must
satisfy criteria of routability of the design.  This is usually an objective function which minimizes
a function of the wire lengths.  Genetic algorithms for placement usually use the following steps:
initialization of the population, evaluation, selection, and allocation.  Some algorithms use so-
called "pressure" techniques.  After formation of each generation, they perform local optimization
to find the best solutions.  Such a procedure helps in finding many local optima, and perhaps also
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the global optimum [73,74].

Floorplanning

The floorplan design problem is to arrange a given set of "flexible" modules (with
undefined shape and pin assignment) in the plane to minimize the chip area and some function
of the wire lengths.  In [75], the theory of punctuated equilibria and genetic algorithms are used.
They propose a new structure and new model for coding of VLSI systems, as well as a novel
genetic strategy and some new genetic operators combining local and random search, by means
of which they state that "better" results may be obtained.  

Routing

Let us consider two optimization problems, the channel routing problem (CRP) and
detailed router problem (DRP) [2,3,76,77].  The CRP is specified by a given rectangular channel
with two rows of terminals along its top and bottom sides. The objective of the channel router
is to assign each net to a horizontal track (or tracks) in order to minimize the number of such
horizontal tracks.  Construction of a genetic algorithm for the CRP includes five major steps [76].

1. Select a representation to encode the search space.  
2. Determine an appropriate evaluation function and scaling scheme.  
3. Determine a selection algorithm.  
4. Choose genetic operators.   
5. Set control parameters. 

A new scheme for selection and some heuristic knowledge-oriented genetic operators combining
local and random search improve the performance of the GA in this application.  After each
generation, the algorithm keeps the best of the previous generation and the newly generated
offspring.  This process improves chances of finding the optimum routing.  Some new results for
the DRP are also developed in [77].
 
Symbolic Layout and Compaction

Symbolic layout and compaction are two closely related design methodologies that
encourage the separation of topological design and geometrical design and help to automate
geometrical design [2,3].  The translation of the output of the detailed-routing phase into mask
data must convert the circuit elements into the appropriate mask features.  At the same time, it
should ensure that all design rules are met, while minimizing the layout area.  In [78], a genetic
algorithm for performing the compaction is described.  A population consisting of lists of
constraints is used with chromosomes differing with respect to the order in which these
constraints are applied.  We will describe this problem and GA’s for it in more details in the next
section. 

The GA strategy is a powerful methodology for avoiding premature convergence at local optima.
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It can be efficiently used for design of VLSI systems. GA’s are easily parallelized, for increasing
speed in massively parallel or distributed computing environments, including low-bandwidth
networks of high-performance computing elements.  Parallel GA’s hold the promise nearly linear
speedup of calculation with the number of processors.        
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2.5. Bin Packing, Nesting and Compaction Using Genetic Algorithms  

2.5.1. 1-D Bin Packing

Problem formulation. Given a finite set of elements E={e,...,e} with associated weights1 n

W={w ,...w }  such that 0<w <w*.  Partition E into N subsets such that the sum of weights in1 n i

each partition is at most w* and that N is the minimum.

Let us first consider the classic traditional methods. In [79] they call an algorithm on-line
if  the numbers in list L are available one at a time and the algorithm has to assign each number
before the next one becomes available.  Let L = (x(1), ... , x(n)) be a given list of real numbers
in (0, 1), and let BIN(1), BIN(2), ... be an infinite sequence of bins, each of unit capacity.  The
BPP is to assign each x(i) to a unique bin, with the sum of numbers in each bin not exceeding
one, such that the total number of bins used is minimum.  It is shown that any on-line algorithm
S must have r(S) > 3/2, where r(S) = S(L)/L*, S(L) is the number of bins used by S, and L*
denotes the minimum number of bins needed.

Commonly Used Heuristics

FIRST-FIT (FF) algorithm (an on-line algorithm).

Given a list L = (x(1), ... , x(n)), the FF assigns x(j) sequentially, for j = 1, 2, ... , n to BIN(i)
with the smallest i whose current content does not exceed (1-x(j)).  The measure r(FF) = 17/10.
The FF algorithm is an O(n log n)-time algorithm.  It is shown in [79] that in generalized,
d-dimensional bin packing, any O(n log n)-time algorithm S must have r(s) > d.

FIRST-FIT-DECREASING (FFD) algorithm (NOT on-line).

Given a list L = (x(1), ... , x(n)), the FFD first sorts the x(j)’s into decreasing order, and then
performs FF.  FFD has a running time O(n log n).  r(FFD) = 11/9.

REFINED-FIRST-FIT (RFF) algorithm.

Any element x(j) in a list L will be called an A-piece, B(1)-piece, B(2)-piece, or X-piece if x(j)
is in the interval (1/2, 1]-A, (2/5, 1/2]-B(1), (1/3, 2/5]-B(2), or (0, 1/3]-X, respectively.  Before
packing, they [79] divide the set of all bins into 4 infinite classes.  Let m from {6, 7, 8, 9} be
a fixed integer.  Suppose the first j-1 numbers in list L have been assigned:  they process the next
number x(j) according to the rules:
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a) Put x(j) by FF into a bin in
   class 1, if x(j) is an A-piece,
   class 2, if x(j) is a B(1)-piece,
   class 3, if x(j) is a B(2)-piece, but not the m(i))th B(2)-piece seen so far for any

integer i>1, 
class 4, if x(j) is an X-piece.

b) If x(j) is the (m(i))th B(2)-piece seen so far for some integer i>1 they 
put x(j) into the first-fit bin containing an A-piece in class 1, if possible, or put
x(j) in a new bin of class 1 otherwise.

RFF runs in O(n log n) time, as it essentially performs a FF within each class, which takes o(n
log n) time for each x(j).  r(RFF) = 5/3.

Article [80] describes two additional heuristics, but with the bin capacity w*=1: Given a list L
=(a(1),..., a(n)) of real numbers in [0, 1], place the elements of L into a minimum number L* of
bins so that none contains numbers whose sum exceeds 1. 

BEST-FIT (BF) algorithm.

Let the bins be indexed as B(1), B(2), ... , with each initially empty.  The numbers a(1), a(2), ...
, a(n) will be placed in that order.  To place a(i), find the least j such that B(j) is filled to level
b < 1-a(i) and b is as large as possible, and place a(i) in B(j).  B(j) is now filled to level b + a(i).

BEST-FIT-DECREASING (BFD) algorithm.

Arrange L = (a(1), a(2), ... , a(n)) into non-increasing order and apply BF to the derived list.

The FF algorithm places each number, in succession, into the first bin in which it fits.  The BF
algorithm places each number, in succession, into the most nearly full bin in which it fits.  In
[80], they show that neither the FF nor the BF algorithms will ever use more than (17/10)L* +
2 bins.  They prove that, if L is in decreasing order, then neither algorithm will use more than
(11/9)L* + 4 bins.

In [23], the authors describe classical solutions of on-line packing problems, i.e., that pack
items as they arrive without any knowledge of future arrivals.  Thus, such algorithms will assign
the items to bins in order of increasing index, under the single constraint that at each time t there
be no bin that contains "currently active" items whose sizes sum to more than w*.  First Fit (FF)
packing is the central algorithm of interest.  The ordering for occupied bins is maintained by this
procedure.  They generalize the classical one-dimensional bin packing model to include dynamic
arrivals and departures of items over time.  In [24], the authors describe two classic
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approximation algorithms for packing rectangles, called next-fit and first-fit shelf algorithms.
Shelf algorithms can pack the rectangles in the order specified by the given list (queue), without
sorting them first.  Unlike [23], the shelf algorithms can pack an infinite list of rectangles such
that for any finite initial segment of the list, the height of the packing is within a constant times
the height of an optimal packing of that segment.

A nature-based stochastic approach as a new approximation algorithm for solving the bin-packing
problem and as a solution-improving tool for the FFD in its worst cases is proposed in [21].  This
approach is called the Annealing-Genetic Algorithm (AGA), which incorporates a GA into a
simulated annealing algorithm (SAA) to improve the performance of the SAA.  Both SAA’s and
GA’s are stochastic optimization techniques based on analogy with natural processes, the former
based on thermodynamics and the latter based on natural evolution.  The major advantages of
these nature-based algorithms are their broad applicability, flexibility, ease of implementation,
and potential to find the optimal solutions.  Their disadvantages include the following:  a SAA
may require a long computation time in order to converge to the optimal solutions, and the SAA
may easily be trapped into a local optimum.  GA’s are not well suited to rapidly performing
finely-tuned local search and may exhibit premature convergence due to the loss of alleles
required to reach the global optimum.

The main ideas of this approach in speeding up SAA are as follows.  Instead of just one
starting point and one ending point of a Markov chain in SAA, there are many starting points and
ending points to construct many search paths.  The starting points are selected from the old
generation P(K) based on their fitness values, and the end points are placed in P’(K+1) to become
candidates for the population of the new generation P(K+1).  The GA’s P’(K+1) is operated upon
by SAA to obtain the new ending points placed in P(K+1), and these new ending points have
lower average cost than the old ending points in P’(K+1).  Finally, the new ending points become
the population of the new generation.  The important parameters affecting the efficiency of SAA
are the initial temperature, the total length of the Markov chain, the move generation strategy,
and the frozen condition.  Concepts from GA theory are used to control these parameters.

The Annealing-Genetic algorithm (AGA) starts with a randomly generated population
P’(0).  Next, the Genetic Operators (GO’s) are applied to produce a new population P(0) by
rejecting the higher cost offspring so that the average cost of P(0) is less than that of P’(0).  Then
the search paths are generated from the points of P(0) at a small value of temperature T(0) until
the first generation P(1) is created.  The initial value of the temperature is

T(1) = (the highest cost - the lowest cost)/(0.5 population size).

Starting off with the point of lowest cost in the old generation, a next point is generated from
the current point by the move generation strategy.  It is accepted by the Metropolis criterion
(Pr=exp(-�C/T(K)); �C=the highest cost - lowest cost; T(K)=-�C/lnPr; Pr=0.6;
T(K)=-�C/ln0.6=2a), the next point not only becomes the current point but also is a member of
the next generation.  The process is continued until the new population is generated.  Finally,
when 80% of the population in a certain generation has the same cost as the solution vector, the
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frozen condition is signalled.
Assume, that every bin has capacity �, and that there are n weights in the list 0<a(i)<�

for 1< i <n.  The sum of the a(i) packed in a bin B(j) is called the content of B(j) and denoted
by W(B(j)).  The quantity [�-W(B(j))] is called the gap of B(j), and is denoted by Gap(j).  Then,
Gap(j)=� denotes an empty bin, Gap(j) = 0 denotes a full bin, and Gap(j) < 0 is an illegal
packing.  Then

                 Gap(j), if Gap(j)> 0
   COST(B(j)) = {
                Gap(j) +penalty cost(T(K)), if Gap(j)<0.2

Penalty cost increases as the temperature decreases.  The assignment vector A[1:n] denotes all
weights to bins

   COST(A) = sum(j=1,m) COST(B(j)).

There are two strategies to be used in an algorithm for generating the next point of the search
path.  The first one is the GREEDY MOVE (GM) and the second is the SWAPPING MOVE
(SM).  In a GM, a weight a(i) is randomly selected from the bin, say, B(1), which has the largest
gap among all bins.  Next, this weight is assigned to another bin, say B(2), in an attempt to
decrease the current number of bins needed.  If B(2) has enough room for a(i), move a(i) from
B(1) to B(2). In a SM, we randomly choose two weights a(i), a(j) which have been assigned to
bins B(1) and B(2) respectively, and then exchange their roles.  In these moves, the change of
costs is calculated by

 �C = (COST B(1’) + COST B(2’)) - (COST B(1) + COST B(2)).

The three GO’s not only modify the structure of the population to create new structures, but also
reduce the average cost of the population.  However, no illegal packings are allowed.  The GOs
are performed in the following steps.

Step 1. Two parents are selected from the population based on their fitness values.  Then
the Crossover Operator is applied to produce their two offspring.  The offspring
must have lower costs than the average cost of the old generation; otherwise, the
parents continue for the following steps.

Step 2. The reordering ("inversion") operator is applied to the parent to reorder its
sequence, yielding a new cost.  If the new cost is lower than the old one, the
offspring is copied to the next generation; otherwise, the parents continue to the
next operation. 

Step 3. The mutation operator is applied to each parent, and the offspring is retained if its
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cost is lower than the cost of the parent. Finally, the parents are copied to the next
generation.

These steps are repeated again and again until the population of the next generation is
created.  The AGA has the best average performance among all the algorithms they reviewed
[21].  The AGA can be viewed as a SAA with population-based transition and GO-based
quasi-equilibria control, or it can be viewed as a GA with a Boltzman-type selection operator.
It can be shown that the AGA has polynomial time complexity.

In [20], it is formulated in transportation terms: given a set of boxes of different sizes,
how should one pack them all into containers of a given size in order to use as few containers
as possible.  Paper [20] present a genetic grouping algorithm for this problem.  The problem is
defined as follows:  Given a finite set O of numbers (the object sizes) and two constants B (the
bin size) and N (the number of bins), is it possible to "pack" all the objects into N bins, i.e. does
there exist a partition of O into N or fewer subsets, such that the sum of elements in any of the
subsets does not exceed B? 

It is possible to use the number of bins required directly as the cost function to be
minimized, but that is unusual in practice.  The authors offered a novel cost function:  maximize
 

with N being the number of bins used, fill(i), the sum of sizes of the objects in bin i, C, the bin
capacity and k, a constant, k > 1.  In other words, the objective function to maximize is the
average, over all bins, of the k-th power of "bin efficiency", measuring the exploitation of a bin’s
capacity.  The constant k expresses our concentration on the well-filled, "elite" bins in
comparison to the less filled ones; k=2 typically gives good results [20].  

Bin packing belongs to the optimization (grouping) problems in which the aim is to group
members of a set into a small number of families, in order to optimize a cost function.  So bin
packing can clearly be seen to be a grouping problem:  the aim is to group the objects into
families (bins) and the cost function f above indeed grows with the size (fill) and decreases with
the number (explicitly via N, and implicitly via fill) of the families.  The classical mutation
operator would be too destructive once the GA begins to reach a good solution of the grouping
problem.  The main reason is that the structure of the simple chromosome (which the above
operators work with) is much too object oriented, instead of being group (i.e. bin) oriented. 
 That is why the authors of [20] have chosen the following encoding scheme:  the standard
chromosome is augmented with a group part, encoding the bins on a one-locus-for-one-bin basis.
For example, the chromosomes shown below, which would ordinarily be encoded only as the
parts to the left of the colon (i.e., one locus for each OBJECT) would be expanded to the
following encodings: 
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3

First Fit
Best Fit

A D B C E B : B E C D A   and 
A A A B B B : A B 

with the "group part" (one locus per BIN) written after the colon, indicating that there are a total
of 5 bins in the first example, and two bins in the second.
The additional structure is utilized by a strongly restructured crossover operator, called Bin
Packing Crossover (BPCX).  The FF heuristic serves well as the initial solution-generator for3

population initialization.   Then crossover proceeds as follows:  Consider the following group
parts of two chromosomes to cross (recall that there is one locus per bin in the group part): 

A B C D E F parent 1 
a b c d      parent 2

First, copies are made of the two parents (in order not to destroy the parents)  and two
crossing sites are chosen at random in each of them, yielding, for example 

A | B C D | E F 
a b | c d | 

Next, the bins between the crossing sites in the second chromosome are  injected into the
first  

A c d B C D E F 

Now some of the objects appear twice in the solution and must be thus eliminated.
Suppose some objects injected with the bins "c" and "d" also appear in bins C, E and F.  The
next step is to eliminate bins C, E, and F, leaving 

A c d B D. 

The elimination of those three bins, however, most probably eliminated some objects
which were not injected with bins c and d.  Those objects are thus currently missing from the
solution.  To fix this last problem, apply the FFD heuristic to reinsert them, yielding, say 

A c d B D x, 
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where x represents one or more bins containing reinserted objects which did not fit into the
previous bins (i.e., those to its left). 

The child just constructed indeed inherited important information from both parents,
namely bins A, B and D from the first and c, d from the second.  Note, however, that bins A,
B and D might not be exactly the original ones found in the first parent, because the FFD might
have filled them up further with some of the objects reinserted in the last stage of the BPCX.
First Fit Descending (FFD) first sorts the objects in order of decreasing size before applying the
FF strategy.  It works much slower than FF, but performs slightly better.

2.5.2. 2-D Bin Packing and Nesting 

2-D Bin-Packing .  Given a finite set of rectangular boxes E={e,...,e} with associated1 n

sizes W={(x ,,y ,)...(x ,y )} such that 0<x ,y<L*.  Place without overlapping all or some of the1 1 n n i i

boxes from E into the rectangular bin with sizes X>L*, Y>L* such that the relation of the sum
of box areas to the bin area is the maximum.

Smith has looked at the problem of bin packing arbitrary-dimensional rectangular boxes
into a single orthogonal bin using a GA [25].  The problem is NP-hard.  A solution is to
represent the bin packing as a list of the boxes plus an algorithm for decoding the list into a bin
packing.  The list is readily mutatable (flipping boxes), and is amenable to a modified form of
crossover.

The decoding algorithm takes any list of boxes and forms a legal packing.  There are two
decoding algorithms.  The first is called Symbolic Layout IDE (SLIDE) PACK.  It takes each
box in order from the list, places it in one corner of the bin and lets it fall to the farthest corner
away, as if under the influence of a gravity that only allowed it to move orthogonally.  The effect
is that a box will zigzag into a stable position in the opposite corner from which it was placed.
Slide pack is fast as there is no backtracking, and it is simple to compute.  Its time complexity
is O(n ), where n is the number of boxes.  (There are n! possible orderings of the list of n boxes.)2

 The second algorithm is called SKYLINE PACK.  For each box in the list, in order, it
tries the box in all stable positions, and in all its orientations in the partially packed bin.  A stable
position is one in which the box is tucked into a corner, or a cave formed by other previously
packed boxes.  The algorithm takes its name from the fact that it tours the skyline formed by the
previously packed boxes to find the position in which the next box fits best.  Skyline pack has
time complexity O(n).4

 Smith uses a modified crossover which takes the order of the boxes before the splice from
the first list and the order of the boxes which remain to be packed from the second list after the
splice point (see Fig. 3).
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  string 1:    1 2 | 3 4 5
  string 2:    5 4 | 3 2 1

 ---------------------------
  child        1 2   5 4 3

Fig. 3. An example of Smith’s crossover.

One of the mutation operators Smith has experimented with is SCRAMBLE -- that is,
randomly reordering some portion of the list.  FLIP mutation to try different orientations of the
boxes is necessary if the decoding algorithm does not try the box it is packing in all its
orientations.  The flip mutation operation may be applied discretely to boxes in the list.

 A straightforward evaluation criterion is the ratio of the area of the boxes packed to the
area of the bin.  Smith [20] suggests a way to measure partial bin packing, which favors boxes
filli ng in caves, especially if they fit tightly into the cave.  There is some analogy here to
gravitational effects, and indeed such an evaluation allows us to pack in space as if the boxes
were attracted to each other.  A practical disadvantage is that each time we run the process we
will  end up with a different packing.  Note that paper [81] also has details of a GA on a
two-dimensional bin packing problem.

Paper [22] treats 1-D, 2-D and 3-D packing problems.  The 2-D BPP is intuitively defined
as packing a finite number of 2-D objects, always squares or rectangles, into a 2-D bin of a given
height and infinite length, minimizing the total length required.  The 3-D BPP is an extension
of the 2-D BPP; the objects usually studied are cubes or rectangular solids and the bin is has a
square or rectangular base and infinite height or length.

In [22], the authors use the term stochastic optimization as a generic term for optimization
heuristics which include such approaches as GA and SA, and their algorithm, which draws upon
both of the former.  They define a figure as right-angled polygon loosely resembling one of the
block letters.  In [22] they assume that the length of each edge of a figure is a multiple of this
unit length.  As a result, each figure occupies an integral number of unit squares.  A figure has
a default initial orientation, but may be rotated 90, 180, or 270 degrees.  A solution is a structure
[(f(1),o(1)), ... , (f(N),o(N))]; for a given problem with N figures, each figure is numbered
between 0 and (N-1).  They use f(i), 0<f(i)<(N-1), to represent the i of N figures; o(j), 0<o(j)<3,th

is the figure’s current orientation, and L is the length (cost) of the solution.  Their algorithm has
5 components: (1) Initialization, (2) Selection, (3) Solution Generation, (4) Evaluation, and (5)
Termination.  The algorithm works with a population of solutions.  

(1) The population is initialized randomly, i. e. they generate an integer between 0 and
(N-1) for each f(i), and an integer between 0 and 3 for each o(i).  Evaluation of each solution
produces its length L. The population is then sorted on L, from best to worst.

(2) Biased selection of solutions is performed using a linearly biased random generator.
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The better the solution, the higher the probability of its being selected.  The probability of
selecting the best solution of the population is B times greater than the probability of selecting
the worst solution, where B is a parameter (a bias) provided by user.  Values of B used range
from 1.5 through 3.0.

(3). Generating a new solution from one or more solutions already in the population
(called perturbation in SA) can be performed in either of two ways.  First, a new solution may
be "derived" from an existing solution.  A solution S is selected from the population using linear
bias.  Several solutions in the "neighborhood" of S are randomly generated and evaluated.  If the
best of these neighborhood solutions is at least as good as S (i.e., the  length of the best solution
is equal to or less than the length of S), then the best solution is inserted into the population.
Two solutions are defined to be neighbors if the sequence in which their figures are placed is
identical except for exactly two figures.  The second method simply generates a new solution
randomly, as is done during initialization.  The purpose of generating a solution randomly is to
introduce new permutations, possibly very different from those present in the population, in order
to prevent the population from converging prematurely.

(4). Evaluation of solution S involves assigning a location in the 2-D bin to each figure
such that no two figures overlap.  The figures are assigned locations in the order defined by the
permutation.  Evaluation of solutions is deterministic, and there exists some permutation which,
when sent to the evaluation function, produces the optimal length.

(5). There are 3 conditions under which the process terminates: 
*the population converges,
*no improvement in the best solution has occurred for a pre-specified number of

iterations,
*a predefined maximum number of iterations is reached.

The algorithm is designed such that it can take advantage of multiple processors if
available.  The algorithm is divided into two independent processes: process 0 and process 1.
Process 0 manages the population of solution: collecting the initial solutions during initialization,
selecting solutions in order to form new ones, inserting new solutions, deciding whether a new
solutions will be generated from an existing solution or whether an entirely random solution will
be formed, and checking for convergence or termination.  Process 0 does everything except
evaluate solutions.  Process 0 sends a solution to Process 1 for evaluation.  Process 0 is a master
process which farms out the time-consuming task of solution-evaluation to servant processes,
each of which may be executing on a different processor.

Thus, [22] differs from many other approaches in their description of the 2-D packing
problem, in the stochastic optimization algorithms they use, and in their use of multiple
processors to reduce execution time.

Nesting formulation.  Given a finite set of arbitrary-shaped elements E={e,...,e}.  Place1 n

without overlapping all or some of the elements from E into a rectangular bin with edges X, Y
such that the relation of the sum of element areas to the bin area is the maximum.

Nesting in [29] is the process of selecting the optimal arrangement for a combination of 2-D
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shapes on raw stocks in order to minimize material wastage while taking into consideration the
constraints imposed by the cutting process. The automatic layout process adopted in the
Patnest-Ship algorithm can be divided into three distinct steps:

(a) shape processing,
(b) local optimization, and 
(c) rectangle packing.

(a) This process serves three main functions:  First, it rejects all invalid geometries, and does not
allow the boundaries defining the shape to cross.  The shape processing routine will return to the
user upon detecting any invalid geometries, for the necessary correction.  Second, it transforms
the input data (i. e. graphics elements described randomly) into a logical data structure that is
suitable for use by the program.  Third, it extracts information such as slope, length, change of
direction from one edge to another, area, and other simple properties from the data structure
describing the approximate geometry of the shape.  A simple approach is a used to classify the
input shapes.  Shapes are classified as:  floors; brackets-rectangular; brackets-trapezoidal;
brackets-triangular, etc. 

(b). There are two separate local optimization processes.  The first aims at locating the smallest
rectangular enclosure for clustering similar shapes.  The second aims at squeezing "small" shapes
into the void areas of "big" shapes.  Some pre-defined arrangements include:  identical sides in
contact; rotating one part by 180 degrees and laying side-by-side; laying side-by-side.  In cases
where more than one pair of similar plates needs to be nested, the paired plates are laid side by
side until they touch.  Hence an analysis of the most efficient arrangement for each class of
plates was made and the most efficient arrangement for each class of plates was identified.  The
second method used to fit the "small" pieces into the void spaces of the "big" pieces is similar
to the "rectangle packing" approach with a few added considerations.  They include: the
irregularity of the boundary imposed by the presence of the "big" plate as a constraint; and the
presence of multiple void areas.  Note that an additional check using the actual geometry of the
small shape is attempted even after the enclosing rectangle has failed.

(c). The steps involved in the "rectangle packing" process are as follows: 
* sort the rectangles to be packed according to the criterion selected,
* place the first rectangle at one corner of the stock sheet,
*  identify the pivot points created as a result of introducing a new rectangle.  P i v o t
points are corners created by neighboring boundaries of rectangles or the stock sheet,
* select the pivot point which gives the smallest resulting rectangle.  Check that the newly

placed rectangle does not overlap with the boundary of the stock sheet or with a
rectangle placed earlier,

* repeat step 4 for all remaining rectangles until no more new rectangles can be laid on
the stock sheet.

Three different criteria were used to sequence the order of the plates to be nested:  packed in
order of area, packed in order of length of the longer side of the enclosing rectangles, and the
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length/breadth ratio of the enclosing rectangles.  Patnest-ship runs on a SUN SPARC workstation.
The Patnest-AutoCAD pre-processor provides facilities for users to input part geometry by using
AutoCAD’s drafting commands.  It then converts these geometries into a specially formatted file.
After the automatic nesting process, the Patnest-AutoCAD post-processor can be used to
interactively modify the layout produced.  The algorithm is based on the assumption that
ship/offshore structural plates can be grouped into several classifications, each with an "optimal"
arrangement for multiple similar pieces.  By restricting the variety of shapes to be manipulated,
the authors managed to reduce the problem size.  However, Patnest-ship may provide rather poor
solutions if highly irregular shapes are present.

One of the most critical topics in [30] is the actual nesting, or positioning, of the part
blanks onto the metal strip or sheet stock.  They developed an automated system based on
mathematical programming techniques which optimize blank nesting for a continuous strip
stamping processes.  Efficient nesting of blanks on a coil of metal is essential to reduce the
amount of scrap produced.  Today, most such nesting is done manually [30].  The authors
formulate the problem by first describing the geometry of the part or parts to be nested for
stamping and specifying on initial layout.  They use a novel integer grid technique to efficiently
and accurately compute the overlap between parts and then apply a Simulated Annealing
Algorithm (SAA) to determine a new part layout with zero overlap and minimal scrap.    They
assume no restriction on the shape of the blank.  The shape of the blank is provided by an
ordered list of points on the boundary that are connected by straight lines.  Even for very simple
shapes there are two or more nesting arrangements that are locally optimal.  A locally optimal
configuration has the following property:

there exists a d(0) such that for all d<d(0)

f(Y(0)+-d)>f(Y(0))      (1)

where f is the objective function, Y(0) is the locally optimal configuration, and f(Y(0)) is the
local minimum.  The global minimum satisfies (1) for all d(0).

The description of the blank is provided by an ordered set of points on the boundary of
the blank, which are connected together by straight line segments.  They desire to minimize the
engineering scrap:  SCRAP = l * w - sum(i)AREA(i), where l, w are length and width on a coil.
The objective function is thus OBJ = pressure * SCRAP + penalty * OVERLAP.  The weight
associated with the SCRAP cost in the objective function is analogous to pressure.  They take
the pressure =1.  The neighborhood structure defines a set of configurations from which the next
move is picked at random.

They use a SAA (Simulated Annealing Algorithm) technique to allow for an increase in
the value of the objective function in a controlled manner, as opposed to a downhill-only iterative
improvement technique, which only accepts moves that result in an immediate improvement in
the objective function.  The following terminology is used to describe algorithm.  A feasible
configuration, (K), is a point in the allowable region; the controlling parameter, (T), is the
quantity analogous to temperature in annealing of solids; the cost C(K) is the quantity to be
minimized; the neighborhood of a configuration is a set of predefined feasible points from which
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the next configuration is picked randomly; the Metropolis criterion is the acceptance/rejection
condition; a move is the process of picking a new configuration and applying a Metropolis
criterion; a cooling schedule specifies how the temperature is decremented and how many moves
are performed at each temperature T; the cost function is said to be in a state of equilibrium at
T when the probability (Pr) of being in configuration K is Pr(config.=K) = e , where Z(T)-C(K)/T)/Z(T)

= sum(j)e  is a normalization factor.-C(j)/T

The Metropolis acceptance criterion can be described as follows.  If i is the current
configuration with cost C(i), then the probability of accepting j as the next configuration, with�C = C(j) - C(i) is Pr{new=j|current=i}=1, if �C<0; or =e  otherwise.  The SAA is started-�C/T

at a "high" T and a Markov chain of configuration is generated by randomly picking a
configuration from the neighborhood set of the current configuration in the chain.  The cooling
schedule specifies how many moves are attempted at each temperature and how the T is reduced.
In summary, acceptance of intermediate configurations with higher costs is the strength of this
algorithm.  This property allows for "hillclimbing" moves, that is, climbing out of local minima.
During computation of the overlap area, the interior is first discretized into triangles and then
each triangle in the first body is intersected with each triangle in the second body.  They find the
boundary of the overlap region and then compute its area.  For the nesting of one blank, the
objective function is a function of two variables, configuration (C) and length (L).  In all the
blank nesting problems the T is reduced by a factor of 0.9 -- that is, T(k+1) = 0.9*T(k). 

Article [28] describes a typology of cutting and packing (C&P) problems(C&PP).  C&PP
appear under various names in the literature:

* cutting stock or trim loss problem;
*  bin packing,dual bin packing, strip packing, vector packing, knapsack (packing)
problems;
* vehicle loading, pallet loading, container loading and car loading problems;
* assortment, depletion, dividing, layout, nesting, and partitioning problems;
*  line balancing, memory allocation, scheduling problems, capital budgeting, change
making etc.

A typology founded on the basic logical structure of C&PP is developed in [28]. There are two
groups of basic data whose elements define geometric bodies of fixed shapes (figures) in a one-or
more-dimensional space of real numbers: the stock of the so-called "(large) objects", and the list
or order book of the so-called "(small) items".  The C&P process realizes patterns being
geometric combinations of small items assigned to large objects.  C&P can also be considered
in an abstract, generalized sense taking place in non-spatial dimensions.  Examples: knapsacking
and vehicle loading for the weight dimension; assembly line balancing and multiprocessor
scheduling for the time dimension; capital budgeting for financial dimension; computer memory
allocation for data storage dimensions.

The most important characteristic of C&P is dimensionality.  Elementary types are:  1-D,
2-D, 3-D, and multi-D problems.  A 4-D problem might be obtained when a 3-D BPP in space
has time as the fourth dimension.  Another main characteristic is the way of measuring the
number of large objects and small items respectively:  discrete (or integer) measurement; or
continuous (fractional) measurement.  The combined type of 1-D problem with continuous
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measurement is often called "one-and -a-half-dimensional" (1.5-D).  The figure of an object or
an item is defined as its geometric representation in the space of relevant dimensions.  A figure
is determined by its: form, size, and orientation.  For multi-dimensional problems, an important
question is whether the form of the figures is regular or irregular.  The classification is given by
the shape(s) and number of permitted figures.  The availability characterizes the quantity of
objects and items considered.  It refers to lower and upper bounds on their quantity; their
sequence or order; and the date when an object or item can be or has to be cut or packed.  Four
important groups of pattern restrictions are identified: 

*  minimal or maximal distances between small figures or between cuts dividing large
figures are often important.
*  the orientation of the small figures relative to each other and/or to the large figure may

have to be taken into account.
*  there may be restrictions with respect to the frequency of small items or figures in a

pattern, especially regarding the combination or number of different small
figures or the number of small items, be it in total or relative to certain
figures.

* the type and the number of permitted "cuts" are essential, particularly if the objects and
items are of rectangular or block form.

The objective function of C&P problems often has geometrical as well as combinatorial aspects.
Some include both aspects, some none.  Distinct kinds of criteria appear, depending on whether
they refer to the 

* quantities of large objects or small and residual pieces assigned to patterns;
* geometry of the patterns (layout-optimization), or 
* sequence, combination or number of pattern.

It is typical for many C&P problems that more than one objective has to be considered.
Combined types include:

1. Dimensionality: 1-D, 2-D, 3-D, N-D with N>3.
2. Kind of assignment: all objects and a selection of items; a selection of objects and all

items.
3. Assortment of large objects:  one object; identical figures; different figures.
4. Assortment of small items:  few items (of different figures); many items of many
different figures; many items of relatively few different (non-congruent) figures.

By combining the main types, one obtains 4*2*3*4 = 96 different types of C&P problem.  It
becomes obvious that line balancing, multiprocessor scheduling, and memory allocation belong
to the same combined type as the classical bin packing problem.  Solution approaches include:

1.Object or item-oriented.
1.1 Branch and bound, dynamic programming;
1.2 Approximation algorithms.

2. Pattern-oriented.
2.1 One-pattern (knapsack algorithms);
2.2 Several patterns (linear programming (LP)-based and general heuristics).

Approaches of the first type (object or item-oriented) immediately assign items to objects.
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Approaches of the second type (pattern-oriented) first construct patterns and then assign large
objects as well as small items to some of these patterns.  The two main pattern-oriented
approaches can be distinguished as:  heuristics and those based on LP relaxations.  The quality
of a heuristic heavily depends on the problem-specific choice of "good" patterns.  The LP-based
approximation algorithms first solve the LP-relaxation of the pattern-oriented model and then
search for an integer solution by more or less sophisticated strategies, usually by simply rounding
up.

2.5.3. 3-D Bin Packing 

Problem formulation.  Given a finite set of rectangular 3-D boxes E={e,...,e} with1 n

associated sizes W={(x,,y ,,z  )...(x ,y ,z  )} such that 0<x ,y ,z<L*. Place without overlapping1 1 1 n n n i i i

all or some of the boxes from E into a rectangular 3-D bin with dimensions X>L*, Y>L*, Z>L*
such that the relation of the sum of box volumes to the bin volume is the maximum.

In paper [82], the authors extended the classic Bin Packing problem to three dimensions.
They investigated the solutions for the 3-D packing problem using first fit and next fit packing
strategies with and without GA’s.  They studied several existing crossover functions for GA’s:
PMX, Cycle, and Order CO.  They presented a new crossover function, Rand1.  The GA was
tested using a randomly generated initial population pool and using a seeded initial pool.  The
seeded pool was generated from a package (small item) ordering produced by rotating and sorting
the packages by decreasing height.  In [82], it is shown that the seeded GA using Next Fit and
PMX produced the best overall results for the data sets tested.  The seeded GA using Next Fit
and Order CO provided the best results considering both rapid execution time and packing
efficiency. 

In paper [83], a GA for macro cell placement problem is presented.  The algorithm is
based on a generalization of the 2-dimensional bin packing problem.  The genetic encoding of
a macro cell placement and the corresponding genetic operators are described.  The algorithm
has been tested on a benchmark, and the quality of the placements produced is comparable to
other published results for the benchmark. 

In [20], the authors present GA’s for two NP-hard problems, the bin packing and line
balancing problems.  They define a cost function suitable for the bin packing problem, and show
that the classic GA performs poorly on this problem.  They present an improved representation
fitted to these problems.  Efficient crossover and mutation operators are introduced for bin
packing.  Results of performance tests on randomly generated data are included.

Paper [26] describes a way to create a multiple-chromosome GA that performs well on
a 3-D packing problem involving regular-shaped boxes of different sizes and weights into larger
containers.  The heuristic solution developed, called SMILE [84], is a layer-by-layer scheme that
scheme that finds the appropriate boxes in the next layer.  They combine the
multiple-chromosome GA and SMILE to solve the 3-D BPP.  Let N the total number of boxes
to be packed, L the total number of layers, LEN the length of the container, WID the width of
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the container, VOL(i) the volume of box i, and MAXH(L) the height of packing when the
packing job is done.  They assume that LEN is greater or equal to WID for both containers and
boxes. Thus the packing cost, objective function, can be expressed as follows:

minimize C=(MAX(L)*LEN*WID)-sum(i=1,N)(VOL(i)),

subject to the constraints:

*Each box must occupy a unique and contiguous space.
*Each space is assigned to at most one box.
*The heavier boxes are placed below the lighter ones.
*All unit cubes assigned to a box must be contiguous and partially sum to the shape of

the box.
*A box has a certain side that is the right side up.

A hybrid GA (HGA) has 5 components that must be designed: Representor, Creator, Evaluator,
Generator, Decoder.  

Representor.  In this application, the chromosomes are simply treated as permutations of
the list of boxes to be packed. In [26], a multiple-chromosome representation is proposed, instead
of a single chromosome, to represent an individual.  An individual represents one layout and each
chromosome represents one layer.  The system selects the high performance individuals for the
next generation, but does crossovers and mutations only among homologous chromosomes and
without intra-chromosome exchange.  In other words, crossovers and mutations are done layer
by layer for single or paired individuals. 

Creator.  The initial population pool is another basic components of GAs.  First, they sort
the boxes by their weight; if the weight of two boxes is the same, then the larger volume one has
higher priority.  Second, they search the available space for these boxes according to the sorted
list to construct the first feasible layout, which is used as the first population, so they guarantee
at least one feasible layout can be found.  Third, they do mutation on chromosomes based on the
existing individuals, until N individuals, a predefined limit taken to be the same as the problem
size, have been created.

Evaluator.  Interpretation is a minimization problem.  They take the objective function to
be the fitness value of an individual so that the preferred solutions have smaller fitness values.
When two individuals have the same fitness value, a vertical cross penalty will be considered as
the second criterion in terms of the quality of the population.

Generator.  The selection of parents to reproduce uses roulette wheel selection.  Since this
is a minimization problem, individuals with smaller fitness values have higher probability of
being selected as the parents for the next generation.  The arithmetic inverse is used to adjust the
fitness value of population when the roulette wheel selection method is applied.  The order of
the chromosome is very important in assuring that every box has been assigned to one and only
one location.  All operations that modify the individuals in the population must be performed in
a structure-preserving way.  The partially mapped crossover method is used to perform crossover
of two selected individuals.  This information is used by GAs to select high-quality chromosomes
according to their performance and to cross these notions with many other high performance
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notions from other strings to produce the next generations.  Mutation operations carry out local
modifications of chromosomes and are needed because even though selection and crossover
effectively search and recombine extant notions, they may become overzealous and lose some
potentially  useful genetic material.  They also use an "inversion" or reordering operator.
Inversion acts by partially shuffling the string components.  Reproduction is used to generate the
next generation after crossover and mutation are performed on the selected individuals.  To
guarantee that the best individual is not lost during these operations, an elitist policy is adopted.
In other words, if no better individuals has been discovered between generations, the elitist policy
simply carries forward the most fit individual from the previous generation into the next.
Reproduction will maintain the same number of population from generation to generation without
losing the best one so far.

Decoder. An ordering list of boxes string does not directly represent a packing layout. It
is important to transfer the ordering string into a feasible 3-D layout. Heuristic rules will be used
when generating the layout according the order of chromosomes. The best individual, which has
the minimum objective function among these individuals from the first generation to last
generation, will form the final layout of the packing. 

2.5.4. Compaction 

Problem formulation. Minimize the area of the layout, while preserving the design rules
and not altering the function of the circuit; both x and y coordinates of elements can be changed
simultaneously.

 In [78], the genetic algorithm evolves populations of strings, the length of which is not
fixed.  New individuals are produced by a stochastic mix of the classical genetic operators [4-6]:
crossover, mutation and inversion.  The layout problem may be thought of as a form of 2-D bin-
packing [78].  A collection of rectangles is to be placed in the plane to satisfy certain design
rules and minimize some cost function.  The simplest version of this problem has:
 - rectangles of fixed sizes,
 - a design rule such that distinct rectangles should not overlap,
 - cost given by area of bounding box.

This version of the problem is already intractable.  Suppose we satisfy the constraint that
the distinct rectangles, p, q should not overlap, by stipulating that one of the 4 elementary
constraints: p above q, p below q, p left q, p right q is satisfied.  Then for n rectangles, we have
N=n -n pairs and, a priori, 4 elements in our search space of layout strategies.  This approach2 N

considers layout strategies made up of consistent lists of elementary constraints.  The rectangles
are placed in the first quadrant of the plane as close to the origin as is consistent with the list of
elementary constraints.
 Populations of consistent lists of constraints are evolved using various orderings for
selection [78].  The simplest criterion attempts first to remove design-rule violations and then to
reduce the area of the layout.  Strategies with fewer violations beat those with more and, for
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those with the same number of violations, strategies with smaller bounding boxes win.  This
simple prioritization of concerns has led to the generation of some unpromising strategies -- while
the selection criterion was busy removing design rule violations, for example, any strategy with
few such violations (compared to the current population norm) was accepted.  Fourman  found
that the performance of the algorithm was improved by introducing a selection favoring shorter
chromosomes.  His algorithm selects a criterion randomly each time it has a selection to make.
Each time the algorithm is asked to compare two individuals, it non-deterministic chooses one
of these criteria and applies it, ignoring the others.  The resulting populations show greater
variability than when a deterministic selection is used involving all criteria simultaneously.
 Then, Fourman considers a symbolic layout of blocks connected by wires.  The rectangles
(blocks) are of fixed size and may be translated but not rotated.  The interconnected lines (wires)
are of fixed width but variable length.  A surface level deals with tiles of three kinds---blocks,
horizontal wires, and vertical wires.  In addition to evolving layout constraints dealing with the
relative positions of tiles (above, right of etc.), Fourman uses a fixed list of structural constraints,
to represent the information in the symbolic layout, and fundamental constraints, which represent
the size limitations of tiles.
 Structural constraints: v crosses h, Nbv, Sbv, Ebv, Wbv. Here v, h are the vertical and
horizontal wires and b is a block.  These constraints allow stipulation of which wires cross (and
hence are connected) and which wires connect to which edges (North, South, East, or West) of
which blocks.  At a deeper level, unseen by the user, the problem is represented in terms of the
primitive layout elements, north b, south b, east b, west b, left h, right h, y posn h, top v, btm
v, and x posn v.
 For each tile, Fourman generates a list of fundamental constraints expressing the
relationship between the primitive layout elements arising from it.  Again, he evolves lists of
layout constraints.  These are compiled, together with the fixed structural and fundamental
constraints representing the symbolic layout, to give graphs of constraints on the primitive layout
elements, whose positions are thus determined.  The number of design-rule violations and the
area of the resulting layout are again used to select between rival strategies.
 The algorithm appeared to get stuck for long periods on local minima (in the sense that
one (non-optimal) configuration would dominate the population).  This lack of variation in the
population reduced the usefulness of crossover.  When mutation led to a promising new
configuration, there would be a period of experimentation leading rapidly to a new local
minimum.
 The genetic algorithm may be viewed as a (non-deterministic) machine which is
programmed by supplying it with a selection criterion---an algorithm for comparing two lists of
constraints.  Fourman experimented with various selection criteria based on combinations of total
intersection area of overlap involved in design-rule violations, and the area of a bounding
rectangle.  Fourman also implemented the idea of having several weakly interacting populations
running in parallel.

In [85], compaction (CMP) is carried out simultaneously in both x and y directions.  It
exploits the full freedom to place blocks and wires in its search for an optimal solution.  The
layout CMP problem can be described as follows:  Given the description of a layout, either in
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symbolic form or as a stick diagram, they want to space the circuit elements and interconnections
to minimize the total chip area.  Only orthogonal structures are allowed.  They proposed a search
algorithm based on the technique of simulated annealing (SA).  This method examines complete
solutions one after another, while in a branch and bound algorithm, partial solutions are examined
and expanded.  An advantage of examining complete solutions is that it allows termination of
search according to any time limit, since one can always keep track of the best solution
encountered so far.  Given a symbolic layout such as a stick diagram, they first convert it to a
set of rectangular elements.  The CMP algorithms then rearranges these rectangular elements to
obtain a more compact layout satisfies all the design rules and preserves the given connection
requirements of the circuit.  A given SL consists of a set of elements which are blocks, horizontal
connecting wires, and vertical connecting wires. 

A placement is a specification of the positions of the rectangles in the plane.  The
positions of a rectangle can be specified by the coordinates of its lower-left and upper-right
corners.  Then a layout can be specified by the 4 sets of real numbers (X,Y) (X’,Y’).  The size
of a layout is defined to be the area of the bounding rectangle, namely AREA = max{Z | Z from
X or X’}*max{Z | Z from Y or Y’}.  A valid layout is a choice of the values X, X’; Y, Y’ so
that a certain set of constraints is satisfied.  There are 4 types of constraints:  size constraints,
overlap constraints, minimum distance constraints, and user-specified constraints.  In [85], the
constraints are classified as follows:

1. B, those constraints that MUST be satisfied, which include the size constraints, the
overlap constraints, and the user-specified constraints, and
2. D, those constraints that are divided into groups such that at least (or exactly) one of
the constraints in each group must be satisfied.

A valid set of constraints is a subset E, of constraints that contains all the constraints in B and
at least (or exactly) one constraint in each group in D.  The goal of 2-D CMP is to obtain a valid
layout of minimum size.  The key to obtaining the optimal CMP is to have an efficient procedure
to choose the set of E of constraints. They propose a method that first reduces the size of the
solution space and then uses the technique of SA to choose the set E of constraints. 

In [85] they reduce the size of the solution space using some pruning techniques.  The
first pruning technique is to reduce the number of variables in the problem.  The second pruning
technique involves pruning some of the constraints in the groups in D.  After the pruning phase,
the algorithm proceeds to look for a set E of valid constraints.  The method of SA is used for
this purpose.  It is also well-known that to be able to efficiently apply SA, we need the following
key ingredients:  a concise solution representation; a good neighborhood definition; a suitable
cost function; and an annealing schedule.  They represent valid layouts by using the
corresponding valid sets E of constraints that they satisfy.  Conversely, given a set E of
constraints, they can apply the method in [52] to obtain a layout solution J(E) that is minimum
with respect to E.  For any solution E, they let C(E) = AREA(J(E)) be the cost function.  The
cost function can be computed using the longest path method [36,66].  Given a solution (B or
M), they define a move as the operation of selecting a group in D and exchanging a constraint
for one in that group.  Two solutions (B or M) and (B or M’) are said to be neighbors if M’ can
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be obtained from M by the interchange of the chosen constraint in one of the groups in D.  It
is possible to go from a given solution to any other via a sequence of moves.

The SA algorithm can start with any initial solution.  To speed up the search, in [85] they
have incorporated an initial search to look for a consistent set of constraints to be used as the
initial solution E.  In [85], they  used a fixed ratio temperature schedule T(k) = r*T(k-1), k=1,
2, ... .  Experimental evidence [85] indicates that setting r to 0.9 produces satisfactory results.
The SA algorithm involves many thousands of moves in its search for good solutions.  The
method used in [85] proceeds in two steps.  The first step is an O(n) pruning algorithm to reduce2

the size of the solution space.  The second step employs simulated annealing to examine layout
solutions one after another in its search for an optimal layout solution.

2.6. Conclusions
 

Compaction is the last layout subproblem in our phased approach to layout.  The main
purpose of compaction is to achieve independence from the specific fabrication technology.
Today, the most commonly used approach to compaction is graph-based compaction.  This
framework provides a basis for 1-D and 2-D compaction.  Heuristics exist for interrelating both
dimensions efficiently during the compaction without solving the 2-D compaction optimally.
Graph-based compaction handles only rectangular layout features.  A large portion of compaction
deals with intricate sets of design rules.  Fabrication technology may dictate many complicated
design rules.  For ultrafast circuits, the die area is no longer the single function to be optimized
-- we also need to involve the circuit delay or performance.

The bin packing problem is NP-hard in all of its many formulations.  A few versions of
1-D compaction are NP-hard.  Most versions of 2-D compaction are NP-hard.  The difficulty of
2-D compaction lies in determining how the two dimensions of the layout must interact to
minimize the area.  To circumvent the intrinsic complexity of this question, some heuristics
decide locally how the interaction is to take place.  New perspectives for better solving of
compaction have been discovered by applying various forms of genetic algorithms to the
problem.  But these GA approaches are far from perfected, as it usually is with first attempts to
use a new approach on a difficult problem.  Some of the weaknesses were described in section
2.4.  For example, the algorithm in [78] appeared to get stuck for long periods on local minima;
a practical disadvantage of [25] is that each time we run the process we will end with a different
packing.  Now, on the basis of newly published GAs and the new ideas of the authors, as
described in section 1.1, we hope to continue the development of compaction, bin packing, and
nesting using genetic algorithms.

Compaction and bin packing problems are closely related to each other.  For example, 2-D
bin packing can be regarded as 2-D compaction without some of its constraints -- all element
sizes are fixed and there are no restrictions on connectivity of elements.  In some sense, we can
say that the bin packing problem is a less restricted compaction problem.  So it seems rational
to start with bin packing problems and then to extend the investigation to compaction.  

In our future work, we are planning to generalize 2-D and 3-D formulations of bin
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packing to make these problem closer to compaction.  Then we are going to explore some of the
many ideas concerning GA’s (see, for example, Table 1 - Table 5), which have been found to
be efficient for other applications or in nature, to see which may be most useful for solving bin
packing problems.  Finally, we want to try these useful ideas, selected during the bin packing
investigation, for the compaction problem.  The above-mentioned problems and our goals are
represented in Table 6 - Table 9.  We assume that using GA’s will allow both layout and logic
designers to explore more of the solution space to find the best possible design.
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Table 1. Examples of Crossover Operators from Various Applications

Operation Source Comments

One-point
CO

[4] A schematic of one-point CO shows the alignment of two strings and the
partial exchange of information using a cross site (point) chosen randomly.

Two-point
CO

[86] Two-point CO treats the string (chromosome) as a ring. Two unique points
are selected at random, breaking the ring into two segments that are
exchanged between the parents to produce two offspring.

Multi-
point CO

[86],
[87]

Multi-point CO is the extension of two-point CO. Like two-point CO, it
treats the string as string which the crossover point cut into segments since
the segments of the child must alternate between the two parents, there must
be an even number of segments, and hence an even number of crossover
points. By increasing the number of pairs of crossover points, it decreases
the positional bias and it introduces a distributional bias. 

Order CO [6], [88] Pass the left segment from parent 1. Construct the right segment by taking
the remaining elements from parent 2 in the same order.

Enhanced
order CO

[89] Enhanced order CO proceeds almost the same as order CO. The difference
is only that after two cut crossover points are chosen at random in the first
parent, the second parent is rotated until the element just before the second
cut point is the same as the element just before the second cut point in the
first parent.

Partially
mapped
CO (PMX)

[5], [90] The right segments of both parents act as a partial mapping of pairwise
exchange to be performed on parent 1.

Cycle CO  [91] Cycle CO performs recombination under the constraint that each locus
(gene) comes from the identical position in one parent or the other, and it
thus tends to preserves absolute position of each locus to the maximum
extent feasible, while sampling features of both parents approximately
equally.

Heuristic
CO (an
example)

 [92] The heuristic CO in [92] constructs an offspring for a traveling salesman
problem (TSP).  Pick a random city as starting point for the child’s tour. 
Compare the two edges leaving the starting city in the parents and choose
the shortest edge.  Continue to extend the partial tour.  If the shorter
parental edge would introduce a cycle into the partial tour, then extend the
tour by a random edge.  Continue until a complete tour is generated.

Pattern CO  [93] Pattern CO is achieved by replacing the alleles (genes) in a string from
schema (for example) A, with the corresponding genes of schema B and
vice versa.

Punctua-
ted CO

[94] To the end of each string, attach another bit string of the same length.  The
bits in the new section are interpreted as crossover punctuation ( 1 for yes,
and 0 for no ).  The bits from each parent string are copied one-by-one to
one of the offspring from left to right.
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Segmen-
ted CO

 [86] Segmented CO is a variant of multi-point CO, which allows the number of
crossover points to vary.  Instead of choosing in advance a fixed number of
unique crossover points, a segment switch rate is specified.

Uniform
CO

[95],
[96]

Uniform CO exchanges bits rather than segments. For each bit position in
the string the bits from the two parents are exchanged with fixed probability
p.  Uniform CO removes the positional bias of traditional one-point CO.  Its
use, however, renders inversion useless and linkage (epistasis) meaningless.

Shuffle CO [86] Shuffle CO is similar to classic CO [4] except that it randomly shuffles the
bit positions of the two strings in tandem before crossing them over and
then unshuffles the strings after the segments to the right of the crossing
point have been exchanged. Shuffle CO is designed to eliminate positional
bias by having a schema disruption probability that is independent of
schema defining length.  Of course, its use renders inversion useless.

Analogous
CO

[97] Analogous CO is a modified CO designed to work with order-dependent
production programs.  In contrast to classic CO, which determines
corresponding crosspoints according to their respective positions in the
strings, analogous CO uses the phenotypic function of parameters as the
corresponding cross point criterion.

Masked
CO

 [98] Masked CO uses binary masks to direct CO.  Masked CO is used to
preserve schemata identified by the masks.

Position-
based CO

 [95] A set of positions is random selected, but in this operator, the positions of
elements selected in one parent are imposed on the corresponding elements
in the other parent.

Edge
recombi-
nation CO

[99] This CO involves building a table of adjacent elements in each parent and
then constructing a child using the adjacent information in the table.  Edge
recombination CO builds a child with elements that are almost always next
to each other in one or the other parent.
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Table 2. Examples of "Non-Standard" Architectures for GA-related Search.

Searc
h

Sourc
e

Comments

GAMAS -
migration
and
artificial
selection 

[100] This paper presents an "improved" GA based on migration and artificial
selection (GAMAS).  GAMAS is an algorithm whose architecture is specifically
designed to confront the causes of premature convergence.  GAMAS is not
concerned with the evolution of a single population, but instead is concerned
with macroevolution, or the creation of multiple populations, and the derivation
of solutions from the combined evolutionary effect of these populations. 
GAMAS claims to consistently outperform simple GAs and to alleviate the
problem of premature convergence.

Metalevel
GA’s

[101] Author attempts to determine the optimal control parameters for GA’s.  He
describes experiments that search a parameterized space of GA’s in order to
identify efficient GA’s.  This search is performed by a metalevel GA.  Author
studies 6 parameters characterizing GA’s:  population size, crossover rate,
mutation rate, generation gap, scaling window, and selection strategy.  The
metalevel GA uses this information to conduct a search for a high-performance
algorithm.  The experimental data suggests that while it is possible to optimize
GA control parameters, very good performance can be obtained with a range of
GA control parameter setting.

[102] They use the meta-genetic algorithm [101] to optimize a GA for cell placement. 
The three parameters optimized are the crossover rate, inversion rate, and
mutation rate.  They vary crossover rate and mutation rate during the
optimization.  The meta-genetic algorithm is itself a genetic optimization
process, which runs a GA to solve a placement problem, and manipulates its
parameters to optimize its fitness.

SIGH -
stochastic
iterated
genetic hill-
climbing 

[96] A search strategy called stochastic iterated genetic hillclimbing (SIGH),
resembles both simulated annealing and GA.  However, in SIGH, the
convergence process is reversible.  The connectionist implementation makes it
possible to diverge the search after it has converged, and to recover
coarse-grained information about the space that was suppressed during
convergence.  SIGH can be viewed as a generalization of a GA and stochastic
hillclimbing algorithm, in which genetic search discovers starting points for
subsequent hillclimbing, and hillclimbing biases the population for subsequent
genetic search.

PE -
Punctua-ted
Equilibria 

[103] Uses two principles of the paleontological theory of Punctuated Equilibria (PE) -
allopathic speciation and stasis.  Allopathic speciation involves the rapid
evolution of new species after geographical separation.  Stasis implies that after
equilibrium is reached in an environment, there is little drift in genetic
composition.  PE stresses that a powerful method for generating new species is
to thrust an old species into a new environment -- that is, a new  adaptive
landscape, in which change is beneficial and rewarded.  They chose this method
for an optimal linear arrangement problem.
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 CHC  [104] A nontraditional GA which combines a conservative selection strategy, that
always preserves the best individuals found so far, with a radical (highly
disruptive) recombination operator that produces offspring that are maximally
different from both parents.
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4

Table 3. Examples of Selection Methods and their Modifications and Properties.

Strategy Sourc
e

Comments4

SSwR -
Stochastic
sample with
replacement 

[4], [5],
[6],
[87],
[105]. 

Based on roulette wheel selection.  In SSwR, the wheel is composed of the
original expected values and remains unchanged between spins.  SSwR
provides zero bias, unlimited spread (0>N), cost O(NlogN) and is not readily
parallelizable.

SSwPR -
Stochastic
sampling with
partial
replacement

[105] SSwPR provides medium bias, upper bounded spread, cost O(NlogN) and is
not readily parallelizable.

RSSwR -
Remainder
stochastic
sampling with
replacement 

[105] In RSSwR, the fractional parts of the expected values are sampled by the
roulette wheel method.  The individual’s fractions remain unaltered between
spins, and hence continue to compete for selection.  It provides zero bias, a
lower bound on the spread, cost O(NlogN) and is not readily parallelizable. 
Any individual with an expected value fraction > 0 could theoretically obtain
all samples selected during the fractional phase.

RSSwoR -
Remainder
stochastic
sampling
without
replacement 

 [105] RSSwoR also uses the roulette wheel for the fractional phase.  However, after
each spin, the selected individual’s expected value is set to zero. Hence,
individuals are prevented from having multiple selections during the fractional
phase.  It provides medium bias, minimum spread, cost O(NlogN) and is not
readily parallelizable.

DC -   
Deterministic
Sampling

[105],
[106]

DS provides high bias, minimum spread, cost O(NlogN), and is not readily
parallelizable.  The result of a DS is a minimum sampling error for each
generation and a high overall bias.  DS is not widely used.
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RSIS -
Remainder
stochastic
independent
sampling 

 [105] The fractional phase in RSIS is performed without use of the error-prone
roulette wheel.  This is accomplished by deterministically assigning offspring
according to the integer part of the expected value, and using each fractional
expected value as a probability of selection.  It provides low bias, minimum
spread, cost O(N).  However, it requires traversing the population and making
a stochastic decision for each individual.

SUS -
Stochastic
universal
sampling 

[4],
[105]

SUS is a simple, single-phase, O(N) sampling algorithm. It is zero biased, has
minimum spread and will achieve all N samples in a single traversal. The
algorithm is strictly sequential.

RE -
Reproductive
evolution 

[107] RE is a heuristic method for improving GA search.  RE, when used in
conjunction with an exponential bias, focuses the search by biasing the
allocation of reproductive trials toward schemata which are the most
promising candidates for reproduction.

LR -   Linear
ranking  

[108] Selection in evolutionary algorithms is defined by selection (reproduction)
probabilities p(s)(a(i,t)) for each individual within a population. Here a(i,t) is
an individual in population P(t)={a(1,t),...,a(�,t)}, t from N, �>1. For LR
probabilities p(s)(a(i,t)) = 1/�(hmax-(hmax -hmin)(1-i)/(�-1)), where hmin =
2-hmax and 1< hmax <2.

UR - Uniform
ranking

[109] For UR probabilities p(s)(a(i,t)) = 1/m, if 1<i<m or = 0, 
if m<i<�. 

PS -
Proportional
selection

[4],
[109]

For PS probabilities p(s)(a(i,t)) = f(a(i,t))/sum(j=1,�)(f(j,t), where f, the fitness
function, provides the environmental feedback for selection. Many selection
methods are specific implementations of PS.

Extinctive
versus
preserva-tive
selection 

[109] The term preservative describes a selection scheme, which guarantees a
non-zero selection probability for each individual; i.e., each individual has a
chance to contribute offspring to the next generation.  A selection scheme is
called preservative if for each t>0, for each P(t)=(a(i,t), ..., a(�,t)), for each i
from (1, ..., �) p(s)(a(i,t)) > 0.  A selection scheme is called extinctive if for
each t >0, for each P(t), there exists an i such that p(s)(a(i,t)) = 0. 

Left- versus
right-
extinctive
selection 

[109] A selection scheme is called left extinctive selection (LES) if for each t>0, for
each P(t), there exists L from {1,...,�-1}, i<1 => p(s)(a(i,t))= 0.  A selection
scheme is called right extinctive selection (RES) if for each t>0, for each P(t),
there exists L={2,...,�}, such that i>L => p(s)(a)i,t)) = 0.  Of course, in any
condition the sum (i=1,�)p(s)(a(i,t))=1 must be satisfied.
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Dynamic
versus static
versus
proportional
selection
schemes 

[4],
[109]

A selection scheme is called static if there does not exist i from {1,...,�} such
that for all t>0, probabilities p(s)(a(i,t)) = c(i), where c(i) are constants.  A
selection scheme is called dynamic if for each i from {1,...,�}, and for each
t>0 probabilities p(s)(a(i,t)) = c(i).  PS is a dynamic preservative scheme; LR
realizes a static, preservative scheme; UR is a static and extinctive selection
scheme.

ES -    Elitist
selection  (the
property of
elitism)

[5],
[87],
[109]

In an ES scheme, some or all of the parents are allowed to undergo selection
with their offspring. This might result in unlimited lifetimes of super-fit
individuals.  A selection scheme is called ES or k-elitist if there exists k from
{1,...,�}, such that for each t > 0 and for each i from {1,...,k},  f(a(i,t)) *
f(a(i,t-1)), where  * denotes the < relation in case of minimization task and >
in case of a maximization problem.

Pure selection [109] A selection scheme is called pure if there is no k for {1,...,�} which satisfies
the k-elitist property.

Steady- state
versus
generational
selection

[5],
[87],
[109],
[110]

SSS is a special variant of elitist selection in which the set of parents
incorporated into selection is larger than the set of offspring, which is of size
1.  In the case of SSS [110], an offspring immediately replaces a parent if it
performs better. The set of prospective parents may change for every step of
reproduction.  In contrast, in generational selection, the set of possible parents
remains unchanged until all � offspring for that generation have been
produced.

Incest
prevention 

[104],
[111]

The IP mechanism is a relatively direct approach for preventing similar
individuals from mating. Individuals are randomly paired for mating, but are
only mated if their Hamming distance is above a certain threshold.  The
threshold is initially set to the expected average Hamming distance of the
initial population, and then is allowed to drop as the population converges.

CHC’s
selection 

[104] CHC is a GA that combines elitist replacement-selection with an unbiased
reproduction-selection strategy.  CHC is able to moderate selection pressure. 
It eliminates the traditional selection bias for reproduction, and relies only
upon the fitness-bias of replacement-selection.  CHC is said to be able to use
mating and recombination strategies that help maintain diversity.

Sharing
functions

[5],
[112]

Developed and investigated to permit the formation of stable subpopulations
of different strings within a GA, thereby permitting the parallel investigation
of many peaks (when on-line performance is important).  A sharing  function
is nothing more than a way of causing a degradation of an individual’s payoff
due to presence in the population of a neighbor at some distance as measured
in some similarity space.  For multimodal problem spaces in which on-line
performance is important, a GA with sharing is able to maintain stable
subpopulations of appropriate sizes:  the number of points in each cluster is
roughly proportional to the peak fitness value in the neighborhood of the
cluster.
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GS, PhS -
Genotypic
and
phenotypic
sharing 

 [113] When the proximity of individuals is defined in the decoded parameter space,
it is called PhS.  The use of sharing based on genotypic proximity is called
genotypic sharing or GS.  The genetic closeness of two individuals may be
taken as the number of different alleles in their chromosomes (the Hamming
distance between the strings, for binary representations).

CS -
Crowding
scheme

[87],
[113]

Crowding can be used to modify many selection schemes, altering the strategy
for selecting individuals to replace with new offspring.  In crowding, separate
niches are created by replacing existing strings according to their similarity to
other strings in an overlapping population.  Two parameters, generation gap
(G) and crowding factor CF, are defined.  G dictates the fraction of an
overlapping population that is permitted to reproduce each generation.  When
selecting an individual to die, CF individuals are picked at random from the
population, and the one which is most similar to the new individual is chosen
to be replaced, where similarity is defined in terms of the number of matching
alleles. In [87] CF=2 and 3 were found useful, with G=0.1.

FS -   
Fitness
scaling

[5] A linear scaling modifying "raw" fitness before selection.  The raw fitness f
and the scaled fitness f’ are defined.  Linear scaling requires a linear
relationship between f’ and f: f’ = af + b, where a and b are the coefficients;
they may be chosen in a number of ways.  However, the researcher generally
wants the average scaled fitness f’(avg) to be equal to the average raw fitness
f(avg).  To control the number of offspring given to the population member,
one can use maximum fitness f’(max) = c(mult)f(avg), where c(mult) is the
number of expected copies desired for the best population member.  For
typical small populations (n = 50 - 100) a c(mult) in the range [1.2 - 2} has
been used successfully.

Preselection [5],
[114]

In this scheme an offspring replaces the inferior parent if the offspring’s
fitness exceeds that of the inferior parent.  In this way, diversity is maintained
in the population, because strings tend to replace strings similar to themselves
(one of their parents).
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Table 4. Mutation Operators (MO).

Operator Sourc
e

Comments

SMO -
Simple MO 

[4],
[5], [6]

SMO is the occasional (with small probability) random alternation of the value
of a string position. In the binary coding this simply means changing a 1 to a 0
or vice versa.

CMO’s -
Cavicchio’s
MO

[5],
[114] 

CMO-1 changes a single pixel within a detector.
CMO-2 changes all pixels within a detector.
CMO-3 changes pixel associations between adjacent detectors.

Bosworth,
Foo and
Zeigler MO

[5],
[115]

1. Fletcher-Reeves (FR) MO. It is a fairly sophisticated hill-climbing algorithm.
In FR MO, approximate gradient information (obtained from 2r other function
evaluations, where r is the number of real parameters) is used to determine the
line of conjugate ascent, which is then explored using golden search.  Not
widely applied in practice.
2. Uniform random MO.
3. Quadratic gaussian approximation MO.
4. Cubic gaussian approximation MO.
5. Zero MO.

KA -
Knowledge-
Augmented
MO

[5],
[115]

Encodes multidimensional parameter optimization problem using real
parameters. In [115], developed several MOs incorporating nonpayoff
information.  KA MO uses FR MO (a conjugate gradient method) and golden
search together as a MO.  The use of KA MO has not been restricted to MO.

FSMD -  
Finite-state
machine
diagram 
MO

[116] The mode of MO is determined by the interval within which a number selected
from a random number table lies.  The intervals are chosen in accordance with
a probability distribution over the permitted modes of MO.  Additional numbers
are then selected in order to determine the specific details of the MO.  Thus, the
offspring is made to differ from its parent either by an output symbol, a state
transition, the number of states, or the initial state.

PB - Position-
based 

[117] Two tasks are selected at random, and the second task is placed before the first.

OB - Order-
based 

 [117]. Two tasks are selected at random, and their positions are interchanged (also
called "swap" mutation.

SMO -
Scramble MO 

[117] Under the assumption that the neighborhood of tasks in a task list is important,
it chooses a sublist randomly, and scrambles the order of the tasks within the
sublist.

MMO - 
Mass MO 

 [118] It represents an attempt to adapt the GA to dynamically changing problems.  A
reasonable strategy would be to restart the GA periodically with a newly
generated population (often randomly generated) independently of the previous
solutions.  The alternative that suggests itself is to include in an initial
population for the incoming problem some (current or earlier population) of the
evolving current solution modified by MMO.
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UMWO -
Unbiased-
mutate-
weights
operator 

[119] For each entry in the chromosome, UMWO will, with fixed probability (p=0.1,
for example), replace it with a random value chosen from the initialization
probability distribution.

BMWO -
Biased-
mutate-
weights
operator 

[119] For each entry in the chromosome, this operator will, with fixed probability
(p=0.1, for example), add to it a random value chosen from the initialization
probability distribution.

SMO -
Supervised
MO

[93] SMO combines extra features present in schema A with those of the strings in
B’=B-A.  Thus, it is spreading proven qualities in a controlled way to a larger
population.  If the superiority of one of the schemata is not evident SMO might
be superfluous.

Varying
probability of
mutation 

[115],
[120]

4 mutation regimes are used.  The first consists of  a constant probability MO
across all bits and over all generations, as is usually the case.  The second
decreases the probability of MO exponentially over generations while the third
increases it exponentially over the bit representation of each integer.  The fourth
regime is a combination of the second and the third.

FMO -    
Flip MO

[25],
[117]

FMO is used for solving bin packing problems. FMO tries different orientations
of the boxes, which is necessary if the decoding algorithm does not try the box
it is packing in all its orientations.  FMO is applied discretely to boxes in the
list. 

MO BPP - A
MO for the
bin packing

[20] The MO BPP is follows:  Given a chromosome, select at random a few bins
and eliminate them.  The objects which composed those bins are thus missing
from the solution and they are re-inserted in random order using a first fit
algorithm.
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Table 5. Inversion and Other Operators and Some Descriptive Terminology.5

Operation Source Comments

SINO -     
Simple (linear)
Inversion Operator

[4],[5],
[121],
[122]

Two points are chosen along the length of the
chromosome. The chromosome is cut at those points,
and the order of the cut section is reversed.

L+E INO - Linear
+ end INO  

[5], [121] The L+E INO performs SINO with a specified
probability (for example, 0.75). If SINO was not
performed, end INO would be performed with equal
probability (for example, 0.125) at either the left or
right end  of the string.

CINO -
Continuous INO

[5], [121] A CINO is applied with a specified inversion
probability p(i) to each new individual as the individual
is created.

MINO -      Mass
INO

[5], [121] Mass INO’s are designed to eliminate the proliferation
of noninteracting subpopulations that accompanies
strict-homologue mating.

ShINO - Shadow
INO

[5], [121] ShINO is used to retard disruption. 

Deletion [5], [123] The loss of a chromosome piece is called Deletion. It
can happen in several ways:  one break near a
chromosome tip, two breaks followed by loss of a small
interior piece, two breaks followed by loss of both tips
and formation of a ring chromosome.

Duplication [5], [123] Duplication may result when, following three
chromosome breaks, a segment of one chromosome is
inserted elsewhere in the homologous chromosome or
into a different chromosome.

Translocation [5], [123] Breaks in two or more nonhomologous chromosomes,
followed by reattachments in new combinations, is
called translocation if one or more segments ends up on
a different chromosome than it started. If the
rearrangement of chromosome parts is complete, with
no leftover pieces, the translocation is reciprocal.
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Hybridization  [7] An operation resembling a length-increasing crossover
between genomes from radically different genotypes,
each of which codes for a separate process activated by
a distinct set of internal and external cues, which
produces a new, composite genome that contains the
code for both processes (frequently useful in genetic
programming).

Segregation [5], [123] To form a gamete, we randomly select one of each of
the haploid (a single) chromosomes.  This random
selection process is known as segregation. It effectively
disrupts (i.e., with high probability) any linkage that
might exist between genes on different
(nonhomologous) chromosomes.
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Table 6. 1-D bin packing problem.

Classical formulation Characteris-tics Algorithms Short-
comings

Goals

Given a finite set of
elements E={e,...,e}1 n

with associated
weights W={w,...w }1 n

such that 0<w <w*.i

Partition E into N
subsets such that the
sum of weights in
each partition is at
most w* and that N
is minimum.

Although the
most remote
formulation from
compaction
among the
problems to be
studied,  it is the
most studied of
the problems. 
Therefore very
suitable for initial
explorations of
various GA
techniques. 

Classical
heuristics
[23,24]

Results may
be quite far
from the
minimum.

To
investigate
new genetic
ideas,
operations,
codings,
selection
methods, and
structures
(Table 1 -
Table 5).

Stochastic
(simulated
annealing +
simple GA)
[21,22]

Big CPU
time, local
optima,
premature
conver-
gence. 
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Table 7. 2-D bin packing problem.

Classic formulation Characteris-
tics

Algo-rithms Short-
comings

Goals

Given a finite set of
rectangular boxes
E={e ,...,e} with1 n

associated sizes
W={(x ,,y ,)...(x ,y )}1 1 n n

such that 0<x ,y<L*.i i

Place without overlapping
all or part boxes from E
into the rectangular bin
with sizes X>L*, Y>L*
such that the relation of
the sum of box areas to
the bin area is the
maximum.

Closest to
compaction of
the "classical"
problems.  A
good
formulation to
start from in
exploring
GA’s for
compaction.

Classical
heuristics  
[23,24]

Results are
likely quite
far from the
minimum.

To generalize
the
formulation:
sizes X and Y
can be
variables; a
new criterion -
-the minimum
of the bin
area; and new
kind of boxes
-- with
adjustable
sizes and/or
non-
rectangular.
To investigate
new genetic
ideas,
operations,
codings,
selections, and
structures.

Simple
GA’s
[22,25,78]

Big CPU
time, poorly
directed
improve-
ment.

Given a finite set of
rectangular boxes
E={e ,...,e} with1 n

associated sizes
W={(x ,,y ,)...(x ,y )}1 1 n n

such that 0<x ,y<L*.i i

Place without overlapping
all boxes from E into N
rectangular bins with
sizes X>L*, Y>L* such
that N is the minimum.

Generaliza-
tion of the
first
formulation.

Classical
heuristics
[23,105]

Results are
likely quite
far from the
minimum.

Simple GA
[20]

Nonhomo-
geneous
represen-
tation
decreases
CPU time. 
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Table 8. 3-D bin packing problem.

Classic formulation Characteris-
tics

Algorithms Short-
comings

Goals

Given a finite set of
rectangular 3-D
boxes E={e,...,e}1 n

with associated
sizes W={(x,,y ,,z1 1 1

)...(x ,y ,z  )} suchn n n

that 0<x ,y ,z<L*.i i i

Place without
overlapping all or
part boxes from E
into the rectangular
3-D bin with sizes
X>L*, Y>L*, Z>L*
such that the
relation of the sum
of box volumes to
the bin volume is
the maximum.

Closest 
formulation to
compaction in
the case of 3-
D integrated
circuit
technology
and MCM. 
Probably a
good
foundation on
which to test
construction
of GA’s for 3-
D compaction.

Classical
heuristics.
[23,24]

Results are
likely quite
far from the
minimum.

To generalize the
formulation: sizes
X and Y can be
variables, and can
add a new
criterion --
minimization of
some function
f(X,Y), and a new
kind of boxes --
with adjustable
sizes and more
complex shapes. 
Could aid in
investigating new
GA ideas,
operations,
codings, selection
mechanisms, and
structures.

Simple 
GAs
[82,22,26]

Complex
crossover.
Placement is
done in
layer-after-
layer manner
only.
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Table 9. Compaction problem.

Classical
formulation

Characteris-
tics

Algorithms Short-
comings

Goals

1-D formulation:
Minimize the width
of the layout, while
preserving the
design rules and not
altering the function
of the circuit; only
x coordinates of
elements can be
changed.

See section
2.1.

Traditional
approaches [
2-40,
66,67,124-
127]

Results are
only locally
minimal.

To generalize the
compaction
criteria (signal
delay
minimization)
and introduce
new operations
(90  turns ando

mirror reflections
of elements).
Develop the
approach of [85]
for the GA.  To
apply new GA
ideas, operations,
codings,
selections, and
structures that
were successful
for the bin
packing
problems.

2-D formulation: 
Minimize the area
of the layout, while
preserving the
design rules and not
altering the function
of the circuit; both
x and y coordinates
of elements can be
changed
simultaneously.

See section
2.1.

GA’s [78]
and  
simulated
annealing
[85]

Many
inequalities
lead to long
CPU time.
Simple
genetic
operations.
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3. PROJECT DESCRIPTION

3.1. Project Statement

The focus of this research is on the solution of the integrated circuit layout compaction, bin
packing, and nesting problems on the basis Genetic Algorithms (GAs). It has to enhance the
linkage between symbolic level modeling of the layout and the mask level design of hierarchical,
ultra fast, low power analog and logic circuits. The current status of the GAs to physical design
link has several shortcomings. The dramatic increase in the complexity of VLSI designs has
driven a rapid conversion from hand design to the extensive use of computer-aided layout editor
to support the layout process. Symbolic layout tools free the designers from design rule
consideration and allow them to focus on the topology of the design, thus increasing design
productivity.

Compaction is the process of producing an area-efficient physical layout from a symbolic
layout while enforcing the separation (design rules), electrical connectivity, and user-specified
requirements. It is an active area of research in automatic VLSI layout design. Layout compaction
is the process that takes an existing layout and produces a new layout while minimizing some
geometric aspect (usually size and now it is also important to minimize the circuit delay). This
process preserves the underlying circuit integrity and enforces design rule correctness. As the
complexity of layout and demands to its quality increase, the corresponding increases in
execution time and memory usage become a problem in many compaction systems if a good
solution has to be found. Because of this, compaction results produced by non-evolution design
tools usually produce the layout with the non-minimal area and they are not easily flexible to the
change of the design rules.

3.2. Goals Statement

Most compaction, bin packing, and nesting algorithms implemented today have a high time
computational complexity, O(N ), where m>1 and N is the problem size, and find non-optimalm

solutions. Therefore, it is very important to try to reduce the size of the problem and find new
approaches that solve the compaction, bin packing, and nesting problems more effectively.

These problems may be viewed abstractly as problems of optimization in the presence of
constraints. Genetic algorithms provide a means of guiding the search for fast good solutions.
This project is based on the premise that the methodology of GAs will produce more good
compaction. The project goals are to develop new methodologies, abstractions, models, and
approaches which lead to more efficiently defined and utilized CAD algorithms and tools. This
algorithms will include mechanism of natural evolution. The new methodologies will also
incorporate important improvements in genetic algorithms and physical layout. This is to be
accomplished by defining a new GA methodology and developing a useful set of rules related
genetic algorithms and layout VLSI systems. It is asserted that, even though more information
is to be considered during compaction, our strategy will tend to reduce layout design time due
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to an evolutionary and adaptive to nature approach to generating layout in which a solution of
the compaction problem found at each step is done using a non-random, knowledge-based initial
population.

3.3. The Approach 

3.3.1. The Representation

Let us first briefly examine the effects of the classic genetic operators on examples of
straightforward structures relevant to the compaction (bin packing) problems. We will show why
we think this is not the best structures for these problems.

First of such structures is the following straightforward encoding scheme, in which we represent
explicitly  the position of each element of the electronic circuit via x and y coordinates of (for
example) its top left corner.  For example,

(x ,y )(x ,y )...(x ,y )1 1 2 2 n n

would encode the solution where the first element (component or fragment of connection) is
located at the position (x,y ), the second at the position (x,y ), and so on. 1 1 2 2

An advantage of this representation is the simplicity with which one can go from this
encoding to the positions of the elements on the layout.  A disadvantage is that the crossover and
mutation operations will produce illegal solutions (violations of design rules) in most cases, and
the power of the GA will be seriously impaired.  Moreover, it is difficult to modify GA operators
so as to preserve 

1) the contact between to rectangular elements (fragments) of the same connection; and
2) "good" neighboring elements from the standpoint of connectivity (i.e., keeping elements

with many connections between them "close" on the chromosome and on the layout.  Another
disadvantage is that elements which are close to each other in the layout might be separated in
the chromosome.  The standard two-point crossover would not tend to preserve valuable
schemata. 

Second of the very straightforward representations is the order-based encoding scheme.  Such a
representation simply consists the set of possible permutations of the elements that correspond
to the electronic components, together with some heuristic "decoding" procedure for their
placement given a particular ordering.  The output of the heuristic mechanism is the actual layout
(placement of components together with connections) corresponding to the given chromosome.
The decoding mechanism usually proceeds by considering the elements one by one in the order
specified on the chromosome, and placing them and their corresponding connections in
accordance with the design rules within the area available.  Of course, the decoding procedure
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does not, in general, guarantee optimal decoding of any particular sequence of component; for
example, it might involve a rule which tries to move each new component as far to the top and
left as is allowed by the components already decoded, using the design rules.

A disadvantage of this type of representation is that the ordering crossovers will tend to
utilize context-dependent information out of context during recombination.  Indeed, given the
mechanism of decoding the chromosome, it is clear that the meaning of a gene on the
chromosome depends heavily on all the genes that precede it on the chromosome.  If, for
example, we swap two adjacent genes (elements) in the chromosome, it will very likely lead to
widespread changes in the layout, for all elements "downstream" of the first element of the two
swapped.  So the standard GA operations does not effectively preserve useful schemata ("building
blocks" are not used well).  

In the proposed work, we will investigate a hierarchical chromosome representation (HCR) for
layout problems, including both compaction and bin packing problems.  This representation is
designed to preserve building blocks in chromosomes.  An example from this family of
representations will be described briefly here.  In most cases, we will consider only 2-level
representations, for simplicity, but the results generally hold for a k-level HCR, k>2, as well.
The encoding scheme makes uses genes to represent groups of circuit elements.  The rationale
is that in the problems being considered, it is the groups of elements and their location which are
the meaningful building blocks, i.e., the smallest piece of a solution which can convey
information on the expected quality of the solution they are part of.  This is crucial: indeed, the
very idea behind the GA paradigm is to perform an exploration of the search space, so that
promising regions are identified, together with an exploitation of the information thus gathered,
by an increased search effort in those regions.  If, on the contrary, the encoding scheme does not
allow the building blocks to be exploited (i.e. transmitted from parents to offspring, thus allowing
a continuous search in their surroundings) and simultaneously to serve as estimators of quality
of the regions of the search space they occupy, then the GA strategy inevitably fails and the
algorithm performs in fact little more than a random search or naive evolution.

In 2-level representation, each chromosome might consist (for example) of several groups
G1,G2,...,Gm of elements (or subgroups for k-level HCR) and their relative (within the group)
coordinates.  For instance, an example chromosome might be (for convenience of reading, we
put each group in a separate row or rows) 

<
   { [2] }(x ,y ), // group G1 of one element, level 0G1 G1

   { [1(x ,y )], [4(x ,y )], [7(x ,y )] }(x ,y ), // group G2 of three elements,  level 11 1 4 4 7 7 G2 G2

   { [3(x ,y )], [5(x ,y )] }(x ,y ),  // group G3 of two elements3 3 5 5 G3 G3

   { [6(x ,y )], [8(x ,y )], [9(x ,y )] }(x ,y ) // group G4 of three elements,  level 16 6 8 8 9 9 G4 G4

>(0,0).

Fig. 4(a,b) illustrate this example. 
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A 3-level HCR chromosome might be  

<
   { // beginning of group G5,  level 2

      { [2] }(x ,y ), // group G1 of one element, level 0G1 G1

      { [1(x ,y )], [4(x ,y )], [7(x ,y )] }(x ,y ) }, // group G2 of three elements,  level 11 1 4 4 7 7 G2 G2

   }(x ,y ), // end of group G5G5 G5

   { // beginning of group G6,  level 2
      { [3(x ,y )], [5(x ,y )] }(x ,y ), // group G3 of two elements,  level 13 3 5 5 G3 G3

      { [6(x ,y )], [8(x ,y )] }(x ,y ), // group G4 of three elements,  level 16 6 8 8 G4 G4

   }(x ,y ), // end of group G6G6 G6

   { [9] }(x ,y )  // group G7 of one element, level 0G7 G7

>(0,0).  

Fig. 4(c,d) illustrate this example.  

Each group of elements (subgroups) is a piece of layout -- elements and connections in some area
(or bin, for the bin packing problem).  At the beginning, when we are given some initial layout
to be compacted, each group contains only one element.  During the GA process, some groups
are merged into new, larger groups (of a higher hierarchical level).  

3.3.2. The Genetic Operators

It is important that the primary GA search operators now work not with elements, but rather with
groups.

We can schematically describe an example crossover operator as follows:
1. Select at random some groups, Gf, from the first parent (father).
2. Select at random some groups, Gm, from the second parent (mother), which do not

contain elements (groups) from GF.
3. For elements (or groups) that are not included into Gf or Gm, form a hierarchical

substructure using heuristic algorithms, which can add expert knowledge and sound heuristics to
the process.

4. Apply steps 1 through 3 to the two parents with their roles permuted in order to
generate the second child (if desired).

By changing numbers of groups at steps 1 and 2, we can select the desired balance
between the GA and the heuristic strategies.  At step 3, we can, to the extend found to be
desirable, use valuable information extracted from the initial (symbolic) layout in order to form
groups.  This information can also be used for forming the initial population, if desired.

It is also interesting to note that some undefined parameters of the heuristic algorithm can
be treated as another set of variables for the GA to optimize.  In particular, one of the authors
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[16] has developed several procedures for systematically extending arbitrary order-based
(permutation-type) operators so as to search simultaneously for optimal values of a number of
ordinary binary mapped, fixed-point variables.  The GA architecture described below can, we
believe, make effective use of this capability to improve the performance of the heuristics as it
searches for optimal positions of the elements in the layout.   

A mutation operator also should work with groups rather than elements.  A general
strategy for this operator is the "elimination" of an existing group, after which each element
(subgroup) of the group becomes a separate group, or is redistributed among remaining
subgroups.   
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For the proposed representation, we can use as the decoding mechanism (and for
implementing step 3 of the crossover) one of the existing silicon compilers [2], or at least the
methods of such a program.  A silicon compiler uses a similar representation of the circuit, and
it finds coordinates for each element (group) and each connection between elements (groups). 

During each step of this compilation, two or more groups are merged into one new group,
with simultaneous determination of relative coordinates of elements and connections within the
group formed.  Finally, all groups are merged into one, which represent the whole layout.

3.3.3. The Fitness Function

The simplest fitness function, F to use to estimate the quality of group G (or the wholeG

layout) is the ratio of the area of the group layout which is effectively used (not wasted) to the
whole area, A of the group layout:G

where A  is the "dead" area of the group (the area that is not occupied by elements ord

connections), 0<F<1. (The higher the fitness, the better the layout.)G

As work progresses it is expected that other terms will be added to the fitness function, reflecting
other desired qualities of the solution sought, and compensating for any undesired effects found
to be introduced by the heuristics employed.  However, the area efficiency is expected to remain
a key element of the fitness function.

3.3.4. The Parallel GA Architecture

One of the authors, together with his graduate students, has been investigating various
architectures for parallel and distributed GA’s for over ten years [17-19].  He first realized the
benefits of non-panmictic breeding in GA search in 1976, when an MSU Ph.D. student revealed
to his doctoral committee his mathematical proof that group selection was possible using ordinary
Darwinian principles, so long as isolated ("island") subpopulations with only infrequent
immigration were provided.  

This has led to a succession of distributed and parallel GA architecture implementations,
including five software systems embodying different GA tools and different parallel/distributed
architectures.  Our GA Research and Applications Group is currently using (and making
available) three of these sets of research tools.  The first is for micro-grained parallelism, based
on GENESYS, and most effectively used on Unix-based symmetric multiprocessors, although it
may also be run on distributed workstations.  It holds little interest for solving of the most
difficult problems, as it enables only a hardware speedup of the solution of a single-population
GA problem.  
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The second is for island parallelism, is based on GAUCSDx.x, and designed for loosely coupled,
heterogeneous Unix workstations.  It can be run in a "polite" mode in which any workstation
checkpoints and "dies" whenever a user sits down at the console, and the system is extremely
tolerant of failures/reboots of any nodes.  

The third is also for island parallelism, and runs not only on Unix workstations, but also on
arbitrary networks of PC clones, so long as a shared file space is available (this latter capability
was developed particularly to allow our collaborators in Russia and China access to a parallel GA
toolkit).  To facilitate its use by remote users, it was developed starting from the ’C’ version of
Goldberg’s Simple Genetic Algorithm (as presented so effectively in his introductory book [5]),
but completely rewritten and extended manyfold.  This system, called the GALOPP System
(Genetic Algorithm Optimized for Portability and Parallelism), is now approximately 30,000 lines
of code, features a large variety of crossover operators, selection methods, performance and
diversity measures, and a flexible scheme for inter-population communication.  The user can
specify a problem to solve using a template provided, by doing as little as filling in an objective
function, or can exert tight control over the algorithm through a series of skeleton callback
functions, all without modifying any source code except the user application file.

The primary tool for this project will be the latter system, running primarily in a distributed
workstation environment.  The parallel architecture to be used has been dubbed the "island
injection Genetic Algorithm", or iiGA.  It utilizes subpopulations organized into three or more
"layers," in which each higher layer represents a higher degree of abstraction of the problem (in
this case, for example, higher-level groups).  Migration of individuals, when it occurs, is usually
performed primarily within each layer, however, individuals can also migrate from a higher layer
to a lower layer (but not in the other direction).  When this occurs, the representation is
remapped by desegregating groups into their component constituents at the lower layer.  The lack
of "back contamination" means that the higher-level subpopulations are able to act as a
continuing source of diversity and good high-level building blocks for the lower layers’
populations, immune to the contaminating influence of the lower-layer populations to direct
search toward the local suboptimal solutions they have found.  

The iiGA architecture is not required for relatively simple optimization problems, but the
complexity of the compaction task easily warrants such an approach.  A great deal of
experimentation must be done to determine the best combination of representation/operator
definition/selection method/fitness function/parallel architecture for a class of bin packing and
compaction problems.  However, the lessons we have learned in applying the iiGA to problem
of composite material structures optimization (2-D and 3-D)[19], lowest-energy molecular
configurations, and classification of high-dimensionality empirical data, will serve well in
facilitating progress on the bin packing and compaction problems. 
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3.4. Sequence of Problem Refinement

Work on GA architecture and tuning can progress at the same time as a sophisticated package
for decoding chromosomes into full-blown layouts is being developed.  As envisioned, the GA
work would proceed in three partially overlapping stages:

Task 1 GA design methodology development for the hierarchical chromosome
representation (HCR).

Objective To develop the k-level HCR, which can be applied to the bin packing and layout
VLSI problems. To develop a formal definition and structure for a new
representation (HCR), corresponding GA operators, and GA design methodology,
which is based on HCR and incorporates heuristics and expert knowledge.     

Significance This new design methodology and HCR will profit from the many significant
developments in GA theory and practice made by our group and others, in
providing a basis for effective solving of compaction, bin packing, and nesting
problems.  This is very important, because the problems are NP-hard  and
reasonable approximation algorithms cannot guarantee solutions that are near to
optimal for many practical situations [25]. 

 Approach Our approach is to develop a hierarchical description of the chromosome, in which
each group (node of HCR) represents a building block, and corresponding GA
operators.  The work is based on new results in GAs -- new genetic operations,
encodings, selection methods, and structures (Table 1-Table 5) -- which can
incorporate heuristic algorithms, domain knowledge, and local hillclimbing. 

Task 2 Bin packing and nesting problems. 

Objective To investigate new methodology and some new GA ideas for the 1-D, 2-D, and
3-D bin packing and 2-D nesting problems.To generalize the formulation of the
2-D (3-D) bin packing problems by allowing sizes of the bin be variables and
introducing a new type of boxes -- non-rectangular and with adjustable sizes --
and a new criterion:  the minimum bin area (volume). 

Significance These generalizations make the formulation of the 2-D (3-D) bin packing
problems closer to the compaction problem and the nesting problem. These
approaches will be used for improving the solutions of the 2-D (3-D) bin packing
problems, and these ideas will be incorporated and used in fostering development
of compaction GAs for the layout of real VLSI systems and for addressing nesting
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problems.
 
Approach We will use our methodology and HCR in a series of experiments with tailored

representations in 2-D (3-D) bin-packing and nesting problems.  We will explore
some new schemes for selection:  random with pressure and random-direct
selection, and will investigate new (or newly optimized) genetic operations,
encodings, selection methods, and structures. (See Table 1 - Table 5).  We will
investigate these effects of various parallel GA architectures, including especially
our own "island injection GA" architecture, which appears to be perfectly
"matched" with the HCR, on the solution of these problems.

Task 3 Module placement (simplified compaction) problem.

Objective Development of and experimentation with a highly simplified decoding and fitness
function, based on tracking only the number of connections between each pair of
blocks, but abstracting the details of routing the connections.

Significance This approach will be used for more effective solving of the so-called module
placement problem [2], as an approximation to the 2-D (and 3-D) compaction of
the 2-D (and 3-D) layout problems.  It will create the basis for extension of these
results to the compaction problem.  Moreover, this problem is important in itself,
and practically all industrial CAD systems include some tools to address it.

Approach We wil l use the proposed GA methodology based on HCR. We will attempt to
produce good placement using GAs with HCR. We will accomplish several serials
of experiments to find optimal hierarchical structure parameters and values for
adjustable GA parameters. Our algorithm is to be also in progress in making the
genetic operators robust to quantity of data, variation in dimensions of boxes, and
variation in the aspect ratio of the bin.

Task 4 Compaction problem.

Objective Development of a silicon-compiler-logic-based compaction algorithm, and
experimentation with this representation on real (particularly, the most important
fragments of some modern types of VLSI systems) and benchmark problems.  To
investigate new genetic ideas, operations, encodings, selection methods, and
structures that were successful for solving the bin packing and nesting problems
in order to create a new compaction methodology on the basis of GAs and receive
better compaction solutions. 
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Significance It is expected that the new GA methodology will produce a better packing density
of the layout, smaller die area of the layout, and smaller signal delays along
critical paths. It has to be done more effectively than another techniques. This is
very important, because the problem is NP-hard. Improvement of the density and
the layout area will result in improving practically all characteristics of the VLSI
system.

Approach We will create new GA operators on the basis of HCR and silicon compiler
merge-algorithms. We will consider a generalized formulation of the compaction
including the objective function of the circuit performance. We will extent the
compaction operations by using 90 turns and mirror reflections of modules ando

groups. We will investigate the possibility of incorporating the simulated annealing
approach [85] into GA methodology for dealing with compaction. Our crossover
operator will produce only solutions without design-rule violations and in this
way, reduce tremendously the execution time. It can be based in part on some
ideas developed in [128-130].  Using important information of the initial layout
to generate the initial population will also be exploited.  We will do experiments
to find an effective and efficient structure for the HCR, and will search for good
settings for GA parameters.

3.5. Contribution and Impact

The results of this research effort enhance design automation frameworks and specific
design methodologies in several significant ways. First, the development of a useful set of genetic
operations, rules and design oriented models representing the layout for very high speed and low
power integrated circuits has the potential to improve the performance of both the designs and
algorithms.  Second, research and potential discoveries relating to GAs for the compaction
optimization problem will have an impact on GA development in general.  Applying genetic
algorithms for compaction and bin packing is likely to generate high-quality solutions to these
problems and to other knowledge-oriented tasks in which the objects or events to be sequenced
are unique.
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