
 PRINTED LISTING OF ALL FILES
 ASSOCIATED WITH THE GALOPP SYSTEM
 INCLUDING EXAMPLE APPLICATION, INPUT, AND MASTER FILES

(These files are not listed here, but are included on a disk furnished
separately or on the archive server.)

ithruj2int routine (see utility.c) is used to translate each chromosome into
its associated vector.

The fitness for each chromosome is simply the sum of the squares of these inte-
gers. This example application will function for any chromosome length.

 Final Comments
SGA-C is intended to be a simple program for first-time GA experimentation. It
is not intended to be definitive in terms of its efficiency or the grace of its
implementation. The authors are interested in the comments, criticisms, and bug
reports from SGA-C users, so that the code can be refined for easier use in
subsequent versions.

Please email your comments to rob@galab2.mh.ua.edu, or write to TCGA:

The Clearinghouse for Genetic Algorithms
The University of Alabama
Department of Engineering Mechanics
P.O. Box 870278
Tuscaloosa, Alabama 35487

*Acknowledgments
The authors gratefully acknowledge support provided by NASA under
Grant NGT--50224 and support provided by the National Science Foundation under
Grant CTS--8451610. We also thank Hillol Kargupta for donating his tournament
selection implementation.

 The population size (int).
 The chromosome length (int).
 Print the chromosome strings each generation (y/n)?
 The maximum number of generations for the run (int).
 The probability of crossover (float).
 The probability of mutation (float).
 Application-specific input, if any.
 The seed for the random number generator (float).

 Chromosome Representation and Memory Utilization

SGA-C uses a machine level representation of bit strings to increase
efficiency. This allows crossover and mutation to be implemented as binary
masking operations (see operators.c). Every chromosome (as well as the popu-
lation arrays and some auxiliary memory space) are allocated dynamically at run
time. The dynamic memory allocation scheme allocates a sufficient number of
unsigned integers for each population member to store bits for the user-speci-
fied chromosome length. Because of this feature, it is extremely important
that {BITS_PER_BYTE be properly set (in sga.h and external.h) for your
machine's hardware and C compiler.

 Implementing Application-Specific Routines

To implement a specific application, you should only have to change the file
app.c.

The section on app.c describes the routines in app.c in detail.
If you use additional variables for your specific problem, the easiest method
of making them available to other program units is to declare them in sga.h and
external.h. However, take care that you do not redeclare existing variables.

Three example applications files are included in the SGA-C distribution.

The file app.c performs the simple example problem included with the Pascal
version:
 finding the maximum of x^10, where x is an integer interpretation of
 a chromosome.

The larger version of the same problem, as described in the Goldberg text, is
provided as app1.c, which maximizes the function x^30, where x is an integer
interpretation of a chromosome.

A slightly more complex application is include in app2.c. This application
illustrates two features that have been added to SGA-C. The first of these is
the ithruj2int function, which converts bits i through j in a chromosome to an
integer. The second new feature is the utility pointer that is associated with
each population member. The example application interprets each chromosome as
a set of concatenated integers in binary form. The length of these integer
fields is determined by the user-specified value of field_size, which is read
in by the function app_data(). The field size must be less than the smallest
of the chromosome length and the length of an unsigned integer. An integer
array for storing the interpreted form of each chromosome is dynamically allo-
cated and assigned to the chromosome's utility pointer in app_malloc(). The

Erik D. Goodman, Michigan State University

-90-

[app.c] contains application dependent routines.
Unless you need to change the basic operation of the GA itself, you should

only have to alter this file. Further instructions for altering the
SGA application are included in the description of routine app.

[application()] should contain any application-specific
computations needed before each GA cycle. It is called by main().

[app_data()] should ask for and read in any application-specific
information. This routine is called by init_data().

[app_malloc()] should perform any application-specific calls to
malloc() to dynamically allocate memory. This routine is called by
initmalloc().

[app_free()] should perform any application-specific calls to
free(), for release of dynamically allocated memory. This routine
is called by freeall().

[app_init()] should perform any application-specific
initialization needed. It is called by initialize().

[app_initreport()] should print out an application-specific
initial report before the start of generation cycles. This routine
is called by initialize().

[app_report()] should print out any application-specific output
after each GA cycle. It is called by report().

[app_stats()] should perform any application-specific
statistical calculations. It is called by statistics().

[objfunc(critter)] The objective function for the specific
application. The variable critter is a pointer to an individual
(a GA population member), to which this routine must assign a
fitness. This routine is called by generation().

[Makefile] is a UNIX makefile for SGA-C.

New Features of SGA-C
SGA-C has several features that differ from those of the Pascal version.
One is the ability to name the input and output files on the command line,
i.e.,
sga my.input my.output.
If either of these files is not named on the command line, SGA-C assumes stdin
and stdout, respectively.

Another new feature of SGA-C is its method of representing chromosomes in mem-
ory. SGA-C stores its chromosomes in bit strings at the machine level. Input-
output and chromosome storage in SGA-C are discussed in the following sections.

 Input-Output

SGA-C allows for multiple GA runs. When the program is executed, the user is
first prompted for the number of GA runs to be performed. After this, the
quantity of input needed depends on the selection routine chosen at
compile-time, and any application-specific information required. When
compiled with roulette wheel selection, the input requested from the user is as
follows:

 The number of GA runs to be performed (int).

subtractive method specified by Knuth:81.
[rnd(low,high)] returns an uniformly-distributed integer between

low and high.
[rndreal(low,high)] returns an uniformly-distributed floating

point number between low and high.
[flip(p)] flips a biased coin, returning 1 with probability p, and

0 with probability 1-p.
[advance_random()] generates a new batch of 55 random numbers.
[randomize()] asks the user for a random number seed.
[warmup_random()] primes the random number generator.
[noise(mu, sigma)] generates a normal random variable

with mean mu and standard deviation sigma. This routine is not
currently used in SGA-C, and is only included as a general utility.

[randomnormaldeviate()] is a utility routine used by noise.
It computes a standard normal random variable.

[initrandomnormaldeviate()] initialization routine for
randomnormaldeviate().

[report.c] contains routines used to print a report from each cycle ofSGA-C's
operation.

[report()] controls overall reporting.
[writepop()] writes out the population at every generation.
[writechrom()] writes out the chromosome as a string of ones and

zeroes. In the current implementation, the most significant bit is
the rightmost bit printed.

Three selection routines are included with the SGA-C distribution:

[rselect.c] contains routines for roulette-wheel selection.

[srselect.c] contains the routines for stochastic-remainder selection
 (Booker:82).

[tselect.c] contains the routines for tournament selection (Brindle:81a).
Tournaments of any size up to the population size can be held with this
implementation. [The tournament selection routine included with the
distribution was written by Hillol Kargupta, of the University of
Alabama.]

For modularity, each selection method is made available as a compile time
option. Edit the Makefile to choose a selection method. Each of the three
selection files contains the routines select_memory and select_free (called by
initmalloc and freeall, respectively), which perform any necessary auxiliary
memory handling, and the routines preselect() and select(), which implement the
particular selection method.

[stats.c] contains the routine statistics(), which calculates
population statistics for each generation.

[utility.c] contains various utility routines.
Of particular interest is the routine ithruj2int(), which returns bits i

through j of a chromosome interpreted as an int.

Erik D. Goodman, Michigan State University

-88-

 Files Distributed with SGA-C
 (EDG NOTE: Some Information OBSOLETE)

The following is an outline of the files distributed with SGA-C, the routines
contained in those files, and the structure of the SGA-C distribution.

[sga.h] contains declarations of global variables and structures for
SGA-C. This file is included by main().

Both sga.h and external.h have two "defines" set at the top of the files:
LINELENGTH, which determines the column width of printed output, and
BITS_PER_BYTE, which specifies the number of bits per byte on the machine
hardware. LINELENGTH can be set to any desired positive value, but
BITS_PER_BYTE must be set to the correct value for your hardware.

[external.h] contains external declarations for inclusion in all
source code files except main(). The extern declarations in external.h
should match the declarations in sga.h.

[main.c] contains the main SGA program loop, main().

[generate.c] contains generation(), a routine which generates and
evaluates a new GA population.

[initial.c] contains routines that are called at the beginning of a
GA run.

[initialize()] is the central initialization routine called by
main().

[initdata()] is a routine to prompt the user for SGA parameters.
[initpop()] is a routine that generates a random population.

Currently, SGA-C includes no facility for using seeded populations.
[initreport()] is a routine that prints a report after

initialization and before the first GA cycle.

[memory.c] contains routines for dynamic memory management.

[initmalloc()] is a routine that dynamically allocates space for the GA
population and other necessary data structures.

[freeall()] frees all memory allocated by initmalloc().
[nomemory()] prints out a warning statement

when a call to malloc() fails.

[operators.c] contains the routines for genetic operators.

[crossover()] performs single-point crossover on two mates,
producing two children.

[mutation()] performs a point mutation.

[random.c] contains random number utility programs, including:

[randomperc()] returns a single, uniformly-distributed, real,
pseudo-random number between 0 and 1. This routine uses the

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-87-

 APPENDIX SIX: EXCERPTS FROM THE
 SGA-C V1.1 RELEASE DOCUMENT

NOTE: This appendix describes the SGA-C release on which the GALOPP System was
based. The many extensions and revisions, however, have rendered much of this
information obsolete. It is included for completeness, and in order to help
document the transitions from Goldberg's original Pascal SGA code (in his text-
book) to the present system.

SGA-C: A C-language Implementation
of a Simple Genetic Algorithm

Robert E. Smith
The University of Alabama
Department of Engineering Mechanics
Tuscaloosa, Alabama 35405

and David E. Goldberg
The University of Illinois
Department of General Engineering
Urbana, Illinois 61801

and Jeff A. Earickson
Alabama Supercomputer Network
The Boeing Company
Huntsville, Alabama 35806

SGA-C Disclaimer: SGA-C is distributed under the terms described in the file
NOWARRANTY. These terms are taken from the GNU General Public License. This
means that SGA-C has no warranty implied or given, and that the authors assume
no liability for damage resulting from its use or misuse.

 Introduction

SGA-C is a C-language translation and extension of the original Pascal SGA code
presented by Goldberg, 89. It has some additional features, but its operation
is essentially the same as that of the original, Pascal version.

This report is included as a concise introduction to the SGA-C distribution. It
is presented with the assumptions that the reader has a general understanding
of Goldberg's original Pascal SGA code, and a good working knowledge of the C
programming language.

The report begins with an outline of the files included in the SGA-C
distribution, and the routines they contain. The outline is followed by a dis-
cussion of significant features of SGA-C that differ from those of the Pascal
version. The report concludes with a discussion of routines that must be
altered to implement one's own application in SGA-C.

Erik D. Goodman, Michigan State University

-86-

bestnow Index (in [0,popsize-1]) of best individual in the current

subpopulation (may not be best ever, if not using elitism).

convinterval Number of generations between printing of convergence

statistics.

crowding_factor DeJong-type crowding factor; 0 means don't use crowding

(offspring replace parents); 1 means pick a random survivor

to replace with new individual (without replacement); 2 or

more means replace CLOSEST (Hamming distance) individual

among the 2 or more survivors tested.

incest_reduction Flag; 0 means no mating restriction in effect; 1 means mates

for parent 1 in a crossover will be picked from a pool of 3

possible parent 2’s -- the one furthest away (Hamming

distance)is chosen as the mate.

stochastic Flag; 0 means NOT stochastic, so don't reevaluate unchanged

individuals; 1 means IS stochastic, so evaluate every

individual every generation (reduces sampling error when

fitnesses vary with time or are density dependent).

elitism Flag; 0 means NOT elitist; 1 means IS elitist: best

individual is guaranteed at least one spot in next

generation.

oldrand[55] Array of random number generator, so restarts can pick up

sequence where it was left off.

jrand Index used in random number generation.

rndx2 Double used in random number generation.

rndcalcflag Flag used in random number generation.

alpha_size Int telling the number of alleles per locus (2 means a bit

string). Legal values in each field will range from 0 through

alpha_size - 1.

permproblem Int telling whether is (==1) a permutation problem or not

(==0)

ANY USER-DEFINED VARIABLES WHICH MUST BE RECORDED (except utility fields)

Any values written to the file by CallBackFun(), which are

added to the end of the "standard" file. User provides the

code to write these variables (if any) in a function called

app_write_ckp_hdr() in file appxxxxx.c (or whatever the

user's application file is called).

These files are read by function ReadCheckPointHeader, whenever a subpopula-
tion is being restored after being checkpointed. (User supplies code to read
any USER-DEFINED VARIABLES written by app_write_ckp_hdr() in its corresponding
function, app_read_ckp_hdr(), and by app_write_utility() in its corresponding
function, app_read_utility()..

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-85-

part of the permutation being sought, but rather encode

(indirectly) values being sought for other parameters.

fieldlength (Calculated) length of each field, for permutation-type or

mixed-type problems.

pcross Probability of crossover (per chromosome), in [0.,1.].

pmutation Probability of mutation (per BIT, for ordinary binary

representations, but per CHROMOSOME, for permutation-type

or mixed-type representations).

scalemult Multiple of average fitness to which most fit individual is

to be scaled. Also used with same meaning when rank-based

selection is used. Value -1 means don't do linear scaling.

conv_measure Result of a convergence measure; see body of manual.

conv_sigma_coeff Number of standard deviations above/below mean to be used

for convergence measure above.

sigma_trunc Number of standard deviations from mean at which

raw fitnesses are to be truncated in calculating scaled

fitness (0.0 means don't don't do sigma truncation).

scaling_window Number of generations back from which LEAST fit individual

will be used to determine scaling of current population (-1

means don't use; 0 means current generation only, 1 means

current plus previous one, etc.; max value currently 19).

windowstart Pointer for tracking generations for window scaling.

windowend (same as above.)

savedmins[20] Array of minimums used for window scaling.

sigma Standard deviation of current raw fitnesses.

neval Number of chromosomes evaluated in current (sub)population

(to date).

lchrom Length of the chromosome (in bits).

genspercycle (Manypops only) Number of generations of a subpopulation

calculated before it is checkpointed and replaced in memory

by another subpopulation.

gen Number of the current generation (a run initialized from

a random population starts gen at 0).

maxgen Value of gen at which run is to terminate (after writing its

checkpoint files, of course). Upon restart, run begins with

highest value gen attained in previous run, so maxgen must

be larger than that to run at all.

run (Onepop only) Number of the run being performed (input file

can have data for multiple runs "stacked" in one file).

printstrings Flag, 0 says don't print chromosomes; 1 says do.

nmutation Number of mutations performed to date (in this

subpopulation).

ncross Number of crossovers performed to date (in this

subpopulation).

Erik D. Goodman, Michigan State University

-84-

SUBPOPULATION.

bestfit.neval Number of evaluations IN THIS SUBPOPULATION ONLY of

individuals up through first finding this most fit

individual of THIS SUBPOPULATION.

bestfit.generation

Generation number (for THIS SUBPOPULATION) at which this

most fit individual OF THIS SUBPOPULATION was first found.

*(bestfit.utility)

If the user defines utility fields, their contents (for

the best individual IN THIS SUBPOPULATION to date) is

written next, by a call to the user-defined utility writer,

app_write_utility(bestfit.utility,fp). Field bestfit.utility

(not written) is the pointer to these contents.

one_pop_cum_sumfitness

Sum of the raw fitnesses of all individuals evaluated in

this subpopulation to date.

one_pop_sum_best_fitness

Sum of the raw fitness of the best individual of each

generation of this subpopulation evaluated to date.

one_pop_best_fitness_count

Count of the number of individuals included in this

subpopulation's one_pop_sum_best_fitness. Thus, offline

performance for this subpopulation can always be calculated

as one_pop_sum_best_fitness / one_pop_best_fitness_count.

one_pop_online_denominator

Number of individuals of this subpopulation whose raw

fitnesses are included in one_pop_cum_sumfitness. Thus,

online performance for this subpopulation can always be

calculated as:

one_pop_cum_sumfitness / one_pop_online_denominator.

startpopnum Number in [0, npops-1] of the FIRST subpopulation whose

calculations will be done by THIS process and processor.

finishpopnum Number in [0, npops-1] of the LAST subpopulation whose

calculations will be done by THIS process and processor.

minraw Lowest raw fitness in the current (sub)population.

avgraw Average raw fitness in the current (sub)population.

fit_max Highest raw fitness in the current (sub)population.

numfields For permutation-type (or mixed-type) problems only, the

total number of fields to be represented on the chromosome.

numpermfields For permutation-type (or mixed-type) problems only, the

number of fields which represent the permutation part of the

solution (cities in TSP, tasks in scheduler, etc.). If NOT

a mixed-type problem, numpermfields == numfields.

numextrafields For mixed-type problems only, number of fields which are NOT

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-83-

III. Files with extension .ckp or .neu

Files with extension .neu are written in file checkhdr.c, by function
WriteCheckPointHeader(callname, CallBackFun), where argument fname is declared
to be:
char *fname
and CallBackFun is declared as:
BOOL (*CallBackFun).

Files of this type contain state information (essentially, all but the actual
individuals in the population) which is needed to restore the program to be
able to continue running after a checkpoint dump is taken.

Argument fname is a pointer to the string which contains the name of the file
which should be opened for writing the checkpoint header information. It must
comply with DOS naming conventions, even on a Unix system, for compatibility
reasons. Thus, only an 8-character name, a period, and a 3-character extension
are allowed. For Onepops runs, this name is assembled from the user input
(file or keyboard), up to 8 characters, using the field "checkptfileprefix",
and appending ".neu". If the user does not specify a checkptfileprefix, then
the restartfileprefix is used, unless none is specified; in that case, the
default "sgackp" is used. For Manypops runs, the procedure is similar, except
that the user-entered prefix is limited to 6 characters, and two-digit subpop-
ulation numbers are appended to it, generating file names like "runone00.neu",
"runone01.neu", etc. Each subpopulation in a run has its own checkpoint header
file.

At the end of a complete cycle of all subpopulations in a Manypops run, all of
the checkpoint header files written (with extension ".neu") are RENAMED to have
extension ".ckp". This enables a restart to be performed "fairly", regardless
of when a run may have been interrupted, by reading only the .ckp files, and
discarding any .neu files resulting from partially completed cycles.

File contents are:

Variable NameExplanation

__

popsize number of chromosomes in population being checkpointed

indcnt number of individuals being recorded in the accompanying

.ind file (always popsize, if written by this function, but

recorded a second time for future flexibility without

changing file format).

chromsize number of unsigned ints in a single chromosome

bestfit.chrom chromsize unsigneds, containing the chromosome of the most

fit individual found to date IN THIS SUBPOPULATION.

bestfit.fitness scaled fitness (if scaling used; otherwise, raw fitness) of

most fit individual to date IN THIS SUBPOPULATION.

bestfit.init_fitness

unscaled (raw) fitness (from user-defined routine

objfunc()) of most fit individual to date IN THIS

Erik D. Goodman, Michigan State University

-82-

At the end of a complete cycle of all subpopulations in a Manypops run, all of
the checkpoint individual files written (with extension ".new") are RENAMED to
have extension ".ind". This enables a restart to be performed "fairly",
regardless of when a run may have been interrupted, by reading only the .ind
files, and discarding any .new files resulting from partially completed cycles.

Files of this type contain the population at the time of checkpointing,
together with a little additional information at the beginning of the file, as
follows:

Var. Name Explanation
__________ ___

version version number of program writing file (not currently used)

popsize Number of individuals in this (sub)population

individualsize
Size (in bytes) of an individual, including the

chromsize unsigneds and the utility fields

lchrom Length of chromosome in bits

bestnow Index in oldpop of current best individual [0,popsize-1].

(Then, for each individual from 0 to popsize-1:)
{
 chrom chromsize unsigneds containing the actual chromosome

 fitness scaled fitness for the chromosome

 init_fitnessraw (unscaled) fitness for the chromosome

 neval number of evaluations performed in THIS subpopulation
this individual was found.

 xsite[0] site [0,lchrom-1] on parent chromosomes where crossover was done
(oneptx) or substring started (twoptx) when this individual
was created, or 0 if created some other way.

 xsite[1] site where substring ended on parent chromosomes if this
individual was created by twoptx; 0 otherwise.

 parent[0] position in oldpop [1,popsize]] of parent[0] of this individual
(one more than subscript in array).

 parent[1] as above, second parent.

 utility fields
if utility fields are defined (pointed to by utility on the

chromosome), the utility fields' contents are written here by
app_write_utility_fields, which the user must define if using
utility fields.

}

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-81-

The .stt file contains the following information:
Variable Name Explanation
_____________ __

all_pops_sumfitness Sum of raw fitnesses of all individuals
evaluated to date

all_pops_sum_best_fitness Sum of best fitness of each subpopulation at each
generation

all_pops_online_denominator Total number of fitnesses summed into current
all_pops_sumfitness

all_pops_best_fitness_count Total number of best fitnesses summed into
current all_pops_sum_best_fitness

all_pops_neval Total number of evaluations performed to date in
all subpopulations

all_pops_bestfit.chrom Chromosome of best individual found so far in all
subpopulations (chromsize unsigneds)

all_pops_bestfit.fitness Scaled fitness of best individual found so far

all_pops_bestfit.init_fitness Raw fitness of best individual found so far

all_pops_bestfit.neval Evaluation number of best individual found so far

all_pops_bestfit.generation Generation number (of its own subpopulation) in
which the best individual found so far was found

all_pops_bestfit If utility fields are defined (pointed to by
utility on the chromosome), the utility fields'
contents are written here by
app_write_utility_fields, which the user must
define if using utility fields.

II. Files with extension .ind or .new

Files with extension .ind or .new are written in file checkwt.c, by function
writecheckpoint().

The file name to be written is contained in the string checkptindfilename. It
must comply with DOS naming conventions, even on Unix systems, for compatibil-
ity reasons. Thus, only an 8-character name, a period, and 3-character exten-
sion are allowed. For Onepops, this name is assembled from the user input
(file or keyboard), up to 8 characters, using the field "checkptfileprefix",
and appending ".new". If the user does not specify a checkptfileprefix, then
the restartfileprefix is used, unless none is specified; in that case, the
default "sgackp" is used. For Manypops runs, the procedure is similar, except
the user-entered prefix is limited to 6 characters, and two-digit subpopulation
numbers are appended to it, generating such file names as "runone00.new",
"runone01.new", etc. Each subpop has its own checkpoint individual file.

Erik D. Goodman, Michigan State University

-80-

 APPENDIX FIVE:

CONTENTS OF THE FILE TYPES WRITTEN BY GALOPPS

I. File xxxxxx99.stt:

Runs of Manypops create or read and write a file called xxxxxx99.stt, where
xxxxxx is the checkptfileprefix specified by the user for this run. The file
contains the overall statistics about the run, including the contributions of
ALL subpopulations being run by ALL processes in ALL processors using the mas-
ter file defining this Manypops run. (Onepop runs do not need or use this file
at all.)

If the user is initiating a NEW run, and not restarting from any saved check-
pointed populations or with "seed" individuals found in previous runs, then the
run should be started with the .stt file "zeroed out." That is done merely by
REMOVING (erasing, deleting) the file from the directory in which the run is
being done. When the process "running" subpopulation 0 determines that there
is not such a file in existence, it will create one full of zero values, which
will then be used by it and all other processes involved in solving this prob-
lem. IF THE USER FORGETS to delete this file, the program will print a warning
to this effect on both the program's normal output and on stderr, however it
does not interfere with normal execution. The file will automatically be
zeroed out.

If the user RESTARTS a run from checkpoints written previously, the .stt file
should be LEFT AS IS, so that gathering of performance statistics can continue
uninterrupted. Its name will agree with the checkpoints WRITTEN by the first
part of the run being restarted, so it will be used when the user specifies the
restartfileprefix from which the run is to be reloaded. After the first cycle
of the restart, a new .stt file for THIS run will be created, matching the
names of the checkpoint files being written now.

The .stt file is read at the beginning of the first cycle and the end of each
cycle of each subpopulation in each process of the problem. Its values are
incremented by the results of that subpopulation's cycle. Thus, it is up to
date as of the last cycle completed for each subpopulation by each processor.

WARNING: Because the updating of this file is done asynchronously by (poten-
tially) many processors, the contents become INVALID if a restart is done after
an "abnormal termination." That is, if the restart results in "throwing away"
of partial cycles (which occurs when some .new and .neu files are left in the
directory because a cycle was not completed), then the contributions of those
partial cycles will ALREADY have been added to all_pops.stt. Thus, after such
a restart, the user should RECOGNIZE that the global statistics have been
affected by adding in of fitnesses, evaluations, etc., even though the popula-
tions which did them have been THROWN OUT. This does NOT occur if the Manypops
processes are terminated normally at the end of a cycle, or if only a single
process is being used to run all subpopulations.

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-79-

ap0to9on.dsk (desktop file for above)
mak0to9.man (makefile for Manypops)
ap0to0p8.in (Manypops (mainmany.c) run)
ap0to9ma.prj (builds Manypops, but called ap0to9ma in Borland C++)
ap0to9ma.dsk (desktop file for above)

Application File appmatch.c -- demo application for the hybrid
representation using automix.c as the setup tool:
--
makmatch.one (makefile for Onepop)
appmatch.in (sample input for Onepop (apmatchs) run)
apmatchs.prj (builds Onepop, but called apmatchs in Borland C++)
apmatchs.dsk (desktop file for above)
makmatch.man (makefile for Manypops)
appmatc8.in (sample input for Manypops (apmatchp) run)
apmatchp.prj (builds Manypops, but called apmatchp in Borland C++)
apmatchp.dsk (desktop file for above)

Mixed Representation Automatic Setup Utility -- automix.c :
--
It is RECOMMENDED that all users wanting to experiment with the hybrid
representation use THIS program, AUTOMIX.C, to prepare the definition of
their representation, which should be coded using the template
appautmx.c. There are many other tools available in mixedrep.c, most of
which may be used directly by the user, but they are much more difficult
to learn to use, whereas automix and the appautmx.c template are very
easy.

automix.mak (Unix command to source to compile automix.c)

Mixed Representation Tutorial Assistant mixtutor.c :

(A tutorial program which "teaches" you about GALOPPS’s hybrid (mixed
reordering/value) representation. Needed only for those NOT using
automix.c, which is much easier to use.)
mixtutor.mak (Unix command to source to compile mixtutor)
mixtutor.prj (Borland C++ project file to compile mixtutor)
mixtutor.dsk (Borland C++ desktop file used with previous)

Mixed Representation Setup Assistant mixsetup.c :
--
(NOTE: This utility is still needed to revise parameters for the rally
application, apprally.c; however, it is recommended that those coding
new applications use only the automix setup program, and begin their
coding from the appautmx.c template.)

mixsetup.mak (Unix command to source to compile mixsetup)
mixsetup.prj (Borland C++ project file to compile mixtutor)
mixsetup.dsk (Borland C++ desktop file used with previous)

Erik D. Goodman, Michigan State University

-78-

app1pos8.in (Manypops multiple-subpopulation run)
8pop2nbr.mst (sample .mst file used by several Manypops input files)
app1psnp.prj (builds Manypops, but called app1psnp.exe, in Borland

C++)
app1psnp.dsk (desktop file for above)

Application File app1both.c : (Also run program mixtutor for setup help)

makap1bo.one (makefile for Onepops)
app1both.in (sample input for Onepop (app1bots) run)
app1bots.prj (builds Onepop, but called app1bots.exe, in Borland C++)
app1bots.dsk (desktop file for above)
makap1bo.man (makefile for Manypops)
app1bot8.in (Manypops multiple-subpopulation run)
8pop2nbr.mst (sample .mst file used by several Manypops input files)
app1botp.prj (builds Manypops, but called app1botp.exe, in Borland

C++)
app1botp.dsk (desktop file for above)

Application File apprally.c : (Also run program mixtutor for setup help)

makrally.one (makefile for Onepop)
apprally.in (sample input for Onepop (appralls) run)
appralls.prj (builds Onepop, but called appralls.exe, in Borland C++)
appralls.dsk (desktop file for above)
makrally.man (makefile for Manypops)
rally4po.in (Manypops (mainmany.c) multiple-subpopulation run)
rally4.mst (sample .mst file used by several Manypops input files)
rally9po.in (Manypops multiple-subpopulation run)
9popbest.mst (sample .mst file used by several Manypops input files)
ral9st.mst (sample .mst file used by rally app, usable by others)
rallycon.in (Manypops multiple-subpopulation run, RESTARTING from

a set of subpopulations produced by rally9po.in,
which MUST have been run before running this.)

apprallp.prj (builds Manypops, but called apprallp.exe, in Borland
C++)

apprallp.dsk (desktop file for above)
cre8rall.mak (compilation command for independent main program

cre8rall.c, which is used to make the inter-city
distance table needed to run apprally.c.)

cre8rall.prj (sample project file for Borland C++ for cre8rall.c
program)

cre8rall.dsk (sample desktop file for Borland C++ for cre8rall.c
program)

Application File app0to9.c -- Demo application with non-binary fields

mak0to9.one (makefile for Onepop)
ap0to9on.in (sample input for Onepop (ap0to9on) run)
ap0to9on.prj (builds Onepop, but called ap0to9on in Borland C++)

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-77-

makmansq.man (makefile for Manypops)
man24to8.in (sample input file for 32-population run, 10 jobs)
24into8.mst (sample master file for 32-population run)
apmansqp.prj (project file for Borland C++, Manypops)
apmansqp.dsk (desktop file for Borland C++, Manypops)
10sub11p.mix (sample subdivision file for 10-job run, 22 extra

fields, MUST BE MADE BY USER by running mixtutor.c
(see description in manual). Input values for
generating THIS example are described in manual,
under discussion of appmansq.c)

10jobsko.par (sample parameter file for manuf. sequencing problem,
written by makmanko.c or makmanuf.c, with 10 jobs.
THIS (or similar) FILE MUST BE MADE BY THE USER ,
by executing makmanko or makmanuf. Parameters to
be used for this sample run are described under
appmansq in the manual.)

makmanuf.prj (prj file for Borland C++, builds a standalone program
which can write random example manufacturing
problems for solution by appmansq.

makmanuf.dsk (desktop file for BorlandC++, Manypops)
makmanuf.c (standalone program for making parameter file for jobs)
makmanuf.mak (compiler command for compiling makmanuf.c)
makmanko.c (standalone program for making parameter file for jobs,

with a known optimum solution.)
makmanko.prj (prj file for Borland C++, builds a standalone program

which can write random example manufacturing
problems for solution by appmansq.

makmanko.dsk (desktop file for BorlandC++, Manypops)
makmanko.mak (compiler

Application File app1perm.c : (Also run program mixtutor for setup help)

makap1pe.one (makefile for Onepop)
app1perm.in (sample input for Onepop (app1prms) run)
app1prms.prj (builds Onepop, but called app1prms.exe, in Borland C++)
app1prms.dsk (desktop file for above)
makap1pe.man (makefile for Manypops)
app1prm8.in (Manypops 8-subpopulation run)
8pop2nbr.mst (sample .mst file used by several Manypops input files)
appprm1p.prj (builds Manypops, but called app1prmp.exe, in Borland

C++)
appprm1p.dsk (desktop file for above)

Application File app1posn.c : (Also run program mixtutor for setup help)

makap1po.one (makefile for Onepop)
app1posn.in (sample input for Onepop (app1psns) run)
app1psns.prj (builds Onepop, but called app1psns.exe, in Borland C++)
app1psns.dsk (desktop file for above)
makap1po.man (makefile for Manypops)

Erik D. Goodman, Michigan State University

-76-

for a truly parallel run on 4 processors (or faked
with 4 processes on one processor,in Unix)

approyr8.in2 (see above)
approyr8.in3 (see above)
approyr8.in4 (see above)
rr24to8.in (sample input for Manypops (approyrp) multi-subpop run)
approyrp.prj (for Manypops ("p" is for "parallel")
approyrp.dsk " "

Application File appbtsp.c :

makbtsp.one (makefile for Onepop)
appbtsp.in (sample input for Onepop (appbtsp) run)
makbtsp.man (makefile for Manypops)
appbtsp8.in (Manypops (mainmany.c) run)
8pop2nbr.mst (sample .mst file used by several Manypops input files)
cre8btsp.c (program to make intercity distance input file. To run

the sample input files, you should run cre8btsp (or
makecity, as executable is called under Unix) to
create files 10cities.dst (for appbtsp.in) or
20cities.dst (for appbtsp8.in).)

cre8btsp.mak (sample compilation command for making the standalone
program which writes the table of distances
between n randomly selected cities, to use with
appbtsp.c.)

cre8btsp.prj (sample .prj file for making cre8btsp.c, for creating
city distances table in Borland C++, appbtsp.c
only.)

cre8btsp.dsk (sample .dsk file for making cre8btsp.c, for creating
city distances table in Borland C++, for appbtsp.c
only.)

Application File appmansq.c : (new version based on automix is
forthcoming soon)
--
makmansq.one (makefile for Onepop (mainone.c))
appmansq.in (input file for single-population run, 5jobs)
apmansqs.prj (prj file for Borland C++, Onepop)
apmansqs.dsk (dsk file for Borland C++, Onepop)
5sub6prm.mix (sample subdivision file for 5-job run, 19 extra

fields, MUST BE MADE BY USER by running mixtutor.c
(see description in manual). Input values for
generating THIS example are described in manual,
under discussion of appmansq.c)

5jobsko.par (sample parameter file for manuf. sequencing problem,
written by makmanko.c or makmanuf.c, with 5 jobs.
THIS (or similar) FILE MUST BE MADE BY THE USER ,
by executing makmanko or makmanuf. Parameters to
be used for this sample run are described under
appmansq in the manual.)

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-75-

Application File app.c : (From Goldberg’s book)

makapp.one (sample makefile for app.c for Onepop (i.e., mainone.c,

etc.on Unix, becomes Onepop; on DOS, appone.exe)
appone.in (sample input file for app.c for Onepop (i.e.,

mainone.c))
appone.prj (sample .prj file for app.c, Onepop, for Borland C++)
appone.dsk (sample desktop file for app.c for Borland C++)
2runsapp.in (sample input file for Onepop, 2 runs (diff. params))
makapp.man (sample makefile for app.c, Manypops(file mainmany.c))
apppop4.in (sample input file, app.c for Manypops (4

subpopulations))
4popbest.mst (sample .mst file used by several Manypops input files)
appmany.prj (sample .prj file for app.c for Manypops for Borland

C++)
appmany.prj (sample .prj file for app.c, Manypops, for Borland C++)

Application File app1.c : (From Goldberg’s book)
--
makapp1.one
app1one.in (sample input for Onepop (app1one) run)
app1one.prj
app1one.dsk
makapp1.man
app1pop4.in (sample input file for Manypop(app1many) multi-subpop run)
4popbest.mst (sample .mst file used by several Manypops input files)
app1many.prj
app1many.dsk

Application File app2 .c: (From Goldberg’s book)
--
makapp2.one
app2one.in (sample input for Onepop (app2one) run)
app2one.prj
app2one.dsk
makapp2.man
app2pop8.in (sample input for Manypops (app2many) multi-subpop run)
8pop2nbr.mst (sample .mst file used by several Manypops input files)
app2many.prj
app2many.dsk

Application File approyrd.c : (J. Holland’s Royal Road Challenge Problem)

approyrd.in (sample input for Onepop (approyrd) run)
approyrd.prj (for Onepop)
approyrd.dsk (for Onepop)
approyr8.in (sample input for Manypops (approyrp) multi-subpop run,

but all running from one process)
approyr8.in1 (one of FOUR sample input files for Manypops (approyrp)

Erik D. Goodman, Michigan State University

-74-

APPENDIX FOUR -- AUXILIARY FILES

 List of the Auxiliary Files Provided with the
 GALOPP System, Release 2.35, and with
 What Problem Files They Are Associated

Files below are listed according to the applications with which they are used.
Note that some .mst files are listed several times, as they are
used with more than one application. Not included below are the .c and .h files,
which are described in the section entitled "Modules To Compile" above.

NOTICE: the parameter values, number of subpopulations, length of runs, choice
of neighbors and how many individuals to bring in, which selection and genetic
operators to use, etc., are all chosen here ONLY FOR DEMO PURPOSES, to show the
various features of the GALOPP System, NOT as examples of good choices of values,
operators, etc. GALOPPS does NOT automatically choose good parameter settings
for you by default, and it is expected that users have familiarity with genetic
algorithms AT LEAST to the level of reading the first few chapters of Goldberg’s
book, Genetic Algorithms in Search, Optimization, and Machine Learning.
Examples were chosen to demonstrate all of the features of GALOPPS, not
necessarily to solve particular problems with maximum efficiency. Please bear
that in mind when running these examples or your own problems.

Information For Users:

READMEFI.RST (ASCII text file describing this version of the GALOPP

System)

nowarran (ASCII text file disclaimer, indicating that there is NO
WARRANTY of any kind associated with the GALOPP
System -- user uses at own risk)

guide235.ps (User’s Guide for GALOPP System, Release 2.35,
POSTSCRIPT VERSION)

guide235.txt (User’s Guide for GALOPP System, Release 2.35, ASCII
text version)

Templates Defining the Structure of Input Files:
--
(NOTE: The easy way to develop an input file for YOUR application is
just to pick an example of one and then modify it until it runs. As long
as you use the (optional) keyword on each input line, then at each stage,
the program will TELL you what it has was looking for and what it has
found, so it is very easy to develop a file with all inputs present in
the correct order.)
intempla.one (template defining the optional input file for Onepop)
intempla.man (template defining the optional input file for Manypops)

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-73-

described briefly below:

A BIGNUM begins with a one-byte field providing the entire length of the
BIGNUM. Next comes a two-byte field providing the position of (from
the lowest-order bit) of the last ONE bit in the value field (i.e., all
higher-order bits are 0). After that field comes the value field, a series of
n bytes which, if concatenated, would represent the binary value of the BIGNUM.
That is:

position of last one
|<---------------------------> |

 | | | | | | | | | |
 |_______ |_______ |_______ |_______ |_______ | ... |10110100|00000000|
 | length |posn of last one | value (low-order to high-order)
 |<------------- length (in bytes) ---------------------------------->|

(If the user should need to represent numbers exceeding 2**4096, it is obvious
how the format can be extended.)

Erik D. Goodman, Michigan State University

-72-

 ...
 }

In some special cases, we can use '=' as a shortcut to do assignment quickly,
but we must be very careful not to discard memory we previously malloced --for
example:

 {
 BIGNUM tmp,bresult ;
 ...
 for (i=0;i<1000;i++)
{
tmp = addbyI(bresult,i) ; /* Now tmp is a temporary result. */
 delete(bresult) ; /* bresult is going to be assigned a new value */ bresult
= tmp ; /* Here must be sure that we don't use tmp's */ /
* current value any more. */
}
 ...
 }

(3) Every function is responsible for initializing/deleting its local
BIGNUMs in its own range. In other words, every function can delete all BIGNUMs
which IT initialized or was passed as a function return from a
'called function'. But BIGNUMs passed into a function as arguments should be
preserved by the called function; i.e., the called function should make its own
"local" copy of the BIGNUM passed to it, and then it is free to use it as it
will (without altering the BIGNUM that was passed to the fu
nction. It is not permissible for the called function to alter the BIGNUM passed
to it, because operations on it might require alteration of its length (and thus
of the memory allocated to it), and THAT IS NOT PERMITTED. A BIGNUM MAY ONLY
BE CREATED, COPIED, USED (I.E., ITS VALUE USED AS AN OPERAND), AND DELETED, BUT
NEVER ALTERED. INSTEAD OF ALTERING A BIGNUM, ONE MUST CREATE A NEW ONE WITH THE
DESIRED VALUE (RESULT OF AN ARITHMETIC OPERATION, FOR EXAMPLE), AND THEN, IF THE
VARIABLE NAME MUST REMAIN THE SAME, ONE MUST DELETE THE OLD VALUE FOR THE
VARIABLE AND CREATE A NEW ONE WITH THE SAME NAME USING THE NEW VALUE AND FUNCTION
newfromB().
In some ways, this resembles using variables in the stack instead of using the
original ones in ordinary C routines. In the example below, a passed parameter
is copied into a new variable, bpar, which then may be used and deleted within
function fun.
 fun(BIGNUM barg)

 {
 ...
 BIGNUM bpar ; /* Copy of BIGNUM argument.*/

 bpar = newfromB(barg) ; /* barg never occurs in fun() except here. */ ...
/* Now we can use bpar freely. */
 }

In spite of all the rules listed above, BIGNUM might be easier to use
than you expect. If you like, please have a look at "bignum.c" for
detailed information about BIGNUM.

To assist you in understanding these routines, the format of a BIGNUM is

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-71-

 ...
 delete(btmp) ;
 ...
 }

The functions we can use to initialize/assign the value of BIGNUM are the
following:

new,newfromB,newfromL,newfromI,newfromS,
 -or-
any function that returns a BIGNUM (addbyX, minusbyX, multbyX, dividebyX, or a
user-defined function).

It is obvious that we must delete/free the local BIGNUM variable whenever we
won't use it any more, because its space is obtained from malloc or realloc, and
it will reside in memory forever unless the program terminates or the space is
freed by a delete (which calls free). The pointer we use to hold the address
of the beginning of a BIGNUM (see also file bignum.h) is a local and automatic
variable, and if we return to an outer procedure(caller) without freeing it, we
can no longer access it, and it is lost for ever! (... well, at least until the
program terminates). If a BIGNUM variable has already been assigned a value,
it is also important to delete it whenever another assignment is made, for
example:
 fun()
 {
 BIGNUM bthis ;
 ...
 bthis = newfromL(0L) ;
 ...
 delete(bthis) ;
 bthis = newfromI(32767);
 ...
 }

(2) It is usually invalid to use '=' to assign a BIGNUM to another BIGNUM, for
example:
 {
 BIGNUM bthis,bthat ;
 ...
 bthis = bthat ; /* No good! bthis and bthat point to the same memory
 * location, and further operations on one
 * variable name may invalidate the other
 * while it is still in use. */
 ...
 }
 Instead, we use newfromB to accomplish this -- for example:

 {
 BIGNUM bthis,bthat ;
 ...
 delete(bthis) ; /* if bthis has already been assigned a value. */
 bthis = newfromB(bthat) ; /* Valid! Now bthis and bthat have the
 * same VALUE, but are independent of
 * each other. */

Erik D. Goodman, Michigan State University

-70-

 APPENDIX THREE

 INTRODUCTION TO THE
 BIGNUM LIBRARY
 FOR
 EXTENDED-RANGE POSITIVE INTEGER ARITHMETIC

(C) Copyright Michigan State University, 1994.
Designed and Implemented by Erik Goodman (MSU) and Wang Gang (Beijing
University of Aeronautics and Astronautics), January, 1994.

The BIGNUM LIBRARY was designed and developed in response to a need for
calculating combinations of n objects m at a time (C(n,m)) for arbitrarily large
n and m, and for calculating subindices (integer subranges) of an
index with range [0, C(n,m)-1] such that the product of subrange cardinalities
is the cardinality of the range. The need arises from seeking to decode the
positions of a class of fields among a larger set of fields, during research on
genetic algorithms. Using this representation, it is possible to use the
positions of "extra" fields on a chromosome to encode arbitrary parameters for
search by the genetic algorithm, using reordering-type genetic operators.

BIGNUM may be visualized as an ordinary data type, similar to int or
unsigned long, except that there are several additional rules governing its
usage, as described below. Functions called to do arithmetic operations
involving BIGNUMS are named for the operation and the data type of the other
operand (i.e., addbyB adds two BIGNUMs, addbyL adds a BIGNUM and a Long int,
etc.). We use the shorthand "addbyX" to refer to all of the addition functions.
Most functions are defined for four data types: BIGNUM (B), long int (L), int
(I), and unsigned short (S).

In case of int or long, the variable's value can be automatically stored in
registers by the compiler when operations are being performed involving it,
because each of them needs only two or four bytes of data to represent it. Every
variable has a fixed location to store its value.

But a BIGNUM is different because we don't know the exact amount of space needed
to store it until we have determined its value. In fact, we use
malloc and realloc to get the space we need to store it. We must use explicit
statements to allocate/initialize or delete the space each BIGNUM might need.
That is why the usage of the BIGNUM type is a little more complex than usage of
a variable of an ordinary data type. There are several rules we must obey in
order to use BIGNUM variables properly:

(1) Usually we use newfromX and delete() to allocate storage for and initialize,
and later delete, the BIGNUM we declare at the beginning of the function, for
example:

 fun()
 {
 BIGNUM btmp ;
 ...
 btmp = newfromI(256) ;

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-69-

 APPENDIX TWO -- PERMUTATION INDEXING

 Permutations and Permutation Indices:
 Encoding and Decoding Methods

It is relatively easy to index the set of n! permutations of n objects. The
encoding and decoding algorithms developed for the GALOPP System both involve
an intermediate representation which we call a relative index. To decode an
array containing a permutation P of {0, 1, ..., n-1}, we first calculate the
relative index r(i) of each successive element P(i) of the permutation among the
ordered set Intn = [0, 1, ..., n-1]. That is,
 initialize Iwork to Intn;
 for (i=0;i<n;i++) {
 for (j=0; j<Iwork(i); j++) {
 r(i) = the number of elements in Iwork BEFORE P(i)
 Iwork <- Iwork\P(i)
 }
 }

The removal of each value P(i) from the array Iwork is accomplished in the
computer code by setting that element of Iwork to a negative number, and then
NOT counting negative values when determining r(i). Thus, for each field P(i),
we now have a corresponding rel_index(i). Then the index of permutation P is
simply the sum of r(i) * (n-i-1)! , for i=0, 1, ..., n-2.

This process is easily reversed to calculate a permutation (element by element)
from a given permutation index.

As n grows, the maximum index will quickly exceed the maximum number which can
be stored in an int or long int word. While it would have been possible to treat
the permutation code overflow problem in the same manner as the position codes
are handled (i.e., by using extended range numbers), it is possible to subdivide
the permutation index more directly, simply, and quickly:

Since n!, the number of permutations of n objects, is easily factored after its
kth term, into (n!/k!) and k!, we can similarly divide the permutation index
into two subfields or subindices. The first subfield indexes the possible
arrangements of the first (n-k) objects, and the second, the remaining k objects.
Of course, this process can be repeated, up to the limit of creating n-1
subindices. As many or as few subindices as desired can be used, so long as
care is taken that none of the subindices can overflow the data type to be used.
If we break n! after its factors b(j), (j=1, 2, ..., m (<n)), and consider b(0)
to be n and b(m) to be 0, then subfield j contains (b(j-1))! / (b(j))! indices,
and so long as each is less than or equal to the maximum value for the data type,
for each j, that choice of permutation index decomposition is valid.

Erik D. Goodman, Michigan State University

-68-

calculating. Let nowstart stand for the column in which we start adding M[r,p]
to the result (for p from (nowstart) to (nowstart+B[r]-1)).

First initialize (result) to 0, r=0, nowstart=0 and loop r from row 0 to row 4.
In each row r, for p from (nowstart) to (nowstart + B[r] - 1), add M[r,p] to
result, then set nowstart to (nowstart + B[r]). Then increment r to the next
row.

In this example,

 p=0 p=1 p=1 p=3 p=3
 B[0]=1 B[1]=0 B[2]=2 B[3]=0 B[4]=0 result += 35(row
1) + 0(row 2) + (6+3)(row 3) + 0(row 4) + 0(row 5).

At the end, the index of instance A is 44.

For the case A = [0 0 0 1 1 1 1 1], B is [3,0,0,0,0], and the index of A is
((35+15+5)+0+0+0+0) = 55.

For the case A = [1 1 1 1 1 0 0 0], B is [0,0,0,0,0], and the index of A is
(0+0+0+0+0+0) = 0.

For more detail on the implementation, you will need to refer to the code.

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-67-

look at the matrix M in another way: view it as a directed graph whose every
vertex has a directed edge to its 'down child' and one to its 'right child'.
Every entry i,j in M, for i = 0,..., m-1, is C(i+j,i). All maximal length paths
from any vertex end at the terminal vertex, M[0,0].

Then each path from a starting vertex M[i,j] (= C(i+j,i)) to the lower right-
hand corner represents one possible choice in C(i+j,i). That is intuitively
clear because C(i+j,i) appears i rous up from the lower right-hand corner, and
j columns to its left. The length of all paths to the corner from C(i+j,i) is
thus a total of i+j edges, and among them, exactly i must be down edges, which
is clearly the problem: (i+j edges, choose i down) or C(i+j,i) paths.

Since these paths are 1:1 onto the set of choices in C(n,m), they can be used
as the basis for an index of C(n,m).

The value at each node in the digraph is the number of paths from THAT node to
the terminal vertex. For each path to the terminal vertex in this graph, there
is a corresponding sequence number when the paths are enumerated by a 'depth
first' algorithm. We use that number as the index of that instance of C(n,m).

We could use a recursive procedure to calculate each index (or instance). But
that would be very expensive. Using M(n,m) and the B array of "skip codes"
developed above, we can calculate the index of that instance quickly, traversing
only a single path through the graph under the guidance of the skip code.

USING THE SKIP CODES AND MATRIX M

For example, let n=8 and m=5. (In the GALOPPS system, that means we have 8 total
fields, of which 5 are "extra" fields.) We must have already calculated the M
up to a dimension of at least 5 rows and 4 columns, as shown, using Equation 2.
Of course, we can fill in as many additional entries as we desire, because
entries already computed do not change as n and m increase. However, we have
written function GetMatrix so that it returns a pointer to a matrix especially
set up for the particular (n,m) to be used for the problem, since it allows
easier (and faster) subscript calculations.

For this example of calculating indices based on C(8,5), M includes:
35 15 5 1
20 10 4 1
10 6 3 1
4 3 2 1
1 1 1 1

Let the binary array A for which we want to find the index be:

 A array = [0 1 1 0 0 1 1 1], and calculate its skip code (B array) as:
 B = [1 0 2 0 0]

We will now revert to the "standard" notation for entries in matrix M, such that
M[0,0] is in the upper left corner, as it simplifies this description greatly.
The index will be a sum of entries selected from some columns c in each row r,
according to the skip code, B[r]. Let (r) denote the row whose entries we are
currently considering for possible addition to the index value ("result") we are

Erik D. Goodman, Michigan State University

-66-

preceding equation indicates that C(n,m) is simply the sum of all entries in the
row immediately below it which are directly below or to the right of C(n,m).)

 C(n,m)___
 _ | | | | |
 /|\ | C(n-1,m-1) C(n-2,m-1) C(m-2,m-1) C(m-1,m-1)
 | | C(n-2,m-2) C(n-3,m-2) C(m-3,m-2) C(m-2,m-2)
 | |
(m-1)|
 | |
 | | C(n-m+2,2) C(n-m+1,2) C(3 , 2) C(2 , 2)
 \|/ | C(n-m+1,1) C(n-m,1) C(2 , 1) C(1 , 1)
 _ ---------- ---------- --- --- ----------- ----------

 |<----------------------- (n-m+1) ------------------------>|

Notice that each element C(p,q) in matrix M is the sum of (C(p-i,q-1), for i
from 1 to p-q+1), just as we saw was true for the problem C(n,m). (Fortunately,
there is an even easier way to compute the entries -- see
below.)

We can extend the matrix and make the last row satisfy Equation 1:

 C(n,m) __
 | | | |
/|\ | C(n-1,m-1) C(n-2,m-1) C(m-2,m-1) C(m-1,m-1)
 | | C(n-2,m-2) C(n-3,m-2) C(m-3,m-2) C(m-2,m-2)
 | |
 m | C(i+j,i)... . . ^

	C(n-m+2,2) C(n-m+1,2) C(3, 2) C(2, 2)
	C(n-m+1,1) C(n-m, 1) C(2, 1) C(1, 1)
\|/ | 1 1 1 1 i=0
 ---------- ---------- --- --- ----------- ---------

|<----------------------- (n-m+1) ------------------------>|
<-------- j=0

Now index matrix M with i and j starting from the lower right-hand corner and
increasing upwards and to the left. Then element M[i,j] contains C(i+j, j)
(which, of course, also equals C(i+j, i)). It is easily shown that

 M[i,j] = M[i-1,j] + M[i, j-1], (Equation 2)

which is equivalent to the identity:

 C(p,q) = C(p-1, q) + C(p-1, q-1).

So matrix M can be filled by initializing the bottom row and rightmost column
to 1, and then simply applying Equation 2 inside row and column loops. If Matrix
is square with m rows and columns from 0 to m-1, then it can be used to calculate
any C(n,m) for n up to and including 2m, and various economies are possible,
taking advantage of the symmetry of the matrix, and of the equality of C(i+j,
i) and C(i+j,j), if they do not slow down the execution of the algorithm.

Now let the dimension of M be m rows [0, m-1] and n-m+1 columns [0, n-m], and

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-65-

COMBINATIONS MATRIX

In order to calculate a combination index for any given m and n, we need to
have an intermediate Matrix for that tuple (n,m). We use function GetMatrix to
fetch the matrix needed for this particular number of total fields and extra
fields. It checks to see if the matrix for that tuple (n,m) has already been
calculated (during this run of the program). If not, it creates it, and
returns a pointer to it; if it already exists, it simply returns a pointer to
it. The overall effect is that the matrix is calculated only once for any
(n,m) in a run of the GALOPPS program -- namely, the first time the function is
called (see also discussion below).

For any tuple (n,m), M(n,m) is a matrix of size [m, n-m+1]. We initialize M
with the following calculation (see explanation below for the derivation of
this calculation):

 (1) M[m-1, j] = 1 for (j=0, ..., n-m);
 M[i, n-m] = 0 for (i=0, ..., m-2)
 M[i,j] = 0 otherwise;

 (2) for(i=m-2; i>0; i--) {
 for (j=n-m-1;j>0;j--) {
 M[i, j] = M[i, j-1] + M[i-1, j]
 }
 }

DERIVATION OF THE COMBINATIONS MATRIX

Let C(n,m) denote the number of distinct ways of selecting m ones out of n binary
values. We can develop our algorithm for calculating an index based on C(n,m)
by analyzing the number of possible choices for placing each successive one FROM
LEFT TO RIGHT among the n positions (i.e., by the FIRST ONE, we mean the LEFTMOST
ONE):

There are (n-m+1) choices for the first 1, beginning at position 1 and ending
at position n-m+1. (Note that the first 1 COULD NOT occupy position n-m+2 or
higher, because if it did, there would not be room for the other m-1 ones in the
remaining m-2 positions.) Now, for each position (i) which the first one could
occupy, we have defined another subproblem: C(n-i,m-1), i.e., how many possible
choices remain for placing the remaining ones among the remaining positions.
The answer to that subproblem is, of course, the number of possible solutions
for C(n,m) GIVEN the FIRST one in position (i). The subproblem can be attacked
recursively in exactly the same fashion as the original problem; however, we
will use another approach in order to yield faster calculations.

The count of combinations C(n,m) is then simply the sum of all of the subproblem
counts for all choices of (i), i.e.:

 C(n,m) = sum of(C(n-i,m-1), for i from 1 to n-m+1.) (Equation 1)

We can define a matrix M using the expression above, as follows: (Note that the

Erik D. Goodman, Michigan State University

-64-

 APPENDIX ONE -- COMBINATION INDEXING

 A Method for Indexing and Calculating
 Indices of Combinations(n,m)

This method was developed by Erik Goodman, Michigan State University, November,
1993, and implemented by Goodman and Wang Gang, Beijing University of Aeronau-
tics and Astronautics, December, 1993 - January, 1994.

The use of genetic algorithms to solve "mixed-type" problems, involving simul-
taneous solution for the optimal permutation of a set of items, and for the
optimal values of a set of real or integer variables, can be done using only
reordering-type genetic operators, such as uniform order-based crossover,
cycle crossover, etc. It may be accomplished by adding "extra" fields to the
permutation fields, and then using the subsequent ordering of the "extra"
fields among themselves, and the positions of the "extra" fields on the chro-
mosome to create two indices: the permutation index and the "position" or
"combination" index. The former index describes uniquely the order in which
the "extra" fields appear on the chromosome, and the latter index describes
uniquely the positions on the chromosome in which "extra" fields are located.
This latter problem is simply one of numbering all combinations of n (all of
the fields) objects taken m (number of "extra" fields) at a time, C(n,m).
While it is extremely easy to calculate C(n,m) as n!/((m!) (n-m)!), it is some-
what more difficult to construct an algorithm for sequentially numbering each
of those possible choices, at least in a manner that is reasonably fast to com-
pute.

The routines for working with position (combination) indices appear in two very
similar versions: mixedrep.c contains routines for working with indices small
enough to fit into a long int, while bigcomb.c is a version able to process
BIGNUM-format indices of arbitrary size. Of course, it is slower than the long
int version. Bigcomb.c maintains a Matrix array similar to the ordinary one,
except that the elements of Matrix are BIGNUMs instead of unsigned longs.
Please refer to bignum.c (APPENDIX THREE) and the code itself for detailed
information on using BIGNUM.

Regardless of whether we are using BIGNUMS or long ints, we calculate a combi-
nation index on the basis of the following coding method.

SKIP CODES

Given array A, with a 1 in each element where an "extra" field appears on the
chromosome, we first calculate array B, the "skip code" array, as shown in this
example:

 A array: (0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1 }

 B array: (2,0,1,1,0,0,0 },

 where B[i] stands for the number of 0's between the ith 1 and (i-1)th 1 in
the A array (an implicit "0th" one is always present at the left-hand end of
the array).

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-63-

point/restart files (.ckp for headers and .ind for individuals). Thus, for
example, the user can make several runs with Onepop on single populations, and
then can use their checkpoint files to initiate a multiple subpopulation run of
Manypops. The user would have to rename the .ind checkpoint files, in that
case, so that they share a common prefix, are numbered 00 ... 0n, and are suf-
fixed .ind and .ckp for individual and header files, respectively. The .stt
file for global statistics will also be invalid and must be ignored. Alterna-
tively, the user may want to "explore" the behavior of a single subpopulation
created by Manypops, and may use Onepop to do that exploration. Examining the
checkpoint files created by Manypops should make it very clear how to proceed.

 UPDATES AND BUG REPORTING

Please report all bugs as soon as possible to:
Erik Goodman
goodman@egr.msu.edu
Phone 1-517-355-6453 Fax: 1-517-355-7516
(Or see mailing address on cover.)
PLEASE BE SURE TO INCLUDE INFORMATION ON HOW TO REACH YOU WITH QUESTIONS OR
REVISED CODE!

(From Russia, you may forward material and seek information through USKOV,
Vladimir L'vovich, CAD Department (RK-6), Moscow State Bauman Technological
University, Building 5, 2-nd Baumanskaya Street, Moscow, 107005, Russia.
email: uskov@aicad.isrir.msk.su., phone: 095/210-07-93 (home) or 095/263-65-26
(department office). Fax (personal): 095/292-65-11 (in message header, spec-
ify USKOV, V. L. - CADDPRT 011722).

(From China, you may forward material or request information through Professor
Li Wei, Department of Computer Science, Beijing University of Aeronautics and
Astronautics, Beijing, 100083, China (Phone: 86-1-201-7251, ext. 614 or 918,
Fax: 86-1-201-5347), or try (unreliable) gabuaa@bepc2.ihep.ac.cn, Attn: Wang
Gang.

If you would like to receive updates (bug fixes and/or new releases of the sys-
tem) please let the author know of your interest through any of these channels.

Erik D. Goodman, Michigan State University

-62-

plus a choice of EXACTLY ONE MUTATION OPERATOR:
 bitmutat.c (for non-permutation problems)
 scramble.c (for permutation or "mixed" problems)
 swap.c (for permutation or "mixed" problems)

plus, for SINGLE POPULATION OPERATION, BOTH OF:
 mainone.c
 startup.c

OR for PARALLEL SUBPOPULATION OPERATION, ALL THREE OF:
 mainmany.c
 initsubp.c
 master.c

To compile the seven "auxiliary" main programs provided with the GALOPP Sys-
tem, the following directives (or their equivalents) may be used (the files
suffixed .mak may be sourced by Unix users to do this, instead):

For automix.c (Assists user in defining a mixed representation for use with
template appautmx.c):
cc -g automix.c mixedrep.c utility.c bignum.c bigcomb.c -lm -o automix

For mixtutor.c (Assists user to develop appropriate representations using per-
mutation and position indices or subindices):
cc -g mixtutor.c mixedrep.c utility.c bignum.c bigcomb.c -lm -o mixtutor

For mixsetup.c (Assists user to develop appropriate representations using per-
mutation and position indices or subindices, and writing a file of the sub-
fields and subranges):
cc -g mixsetup.c mixedrep.c utility.c bignum.c bigcomb.c -lm -o mixsetup

For cre8btsp.c (Creates distance table for n randomly placed cities in a square
of user-specified size, for blind traveling salesman problem):
cc -g cre8btsp.c utility.c -lm -o makecity

For cre8rall.c (Creates distance table for n randomly placed cities in a square
of user-specified size, plus one more random start/finish point (for road rally
problem):
cc -g cre8rall.c utility.c -lm -o makerall

For makmanuf.c (Creates a file of parameters for input to the manufacturing job
sequencing application, appmansq.c):
cc -g makmanuf.c utility.c -lm -o makmanuf

For makmanko.c (Creates a file of parameters for input to the manufacturing job
sequencing application, appmansq.c, but this problem has a known optimum solu-
tion, unlike the one made by makmanuf.c):
cc -g makmanko.c utility.c -lm -o makmanko

NOTE: (At some point (probably not now), you may want to know this:)
The GALOPPS/Onepop and Manypops programs can read and write each others' check-

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-61-

 Modules to Compile

If an ANSI-compatible 'C' compiler is available, the code can be compiled "as
is". If your compiler will not accept ANSI-style prototype declarations, then
you must edit the files "external.h" and "sga.h" and comment out the lines near
the top which read "#define PROTOTYPES_ACCEPTED" and "#define
SECONDARY_PROTOTYPES_ACCEPTED" from both files (see additional information in
the header of file "external.h").

For Unix users, example makefiles are provided, which the user may alter to
suit their particular needs.

To compile and link the files for a PC, you must select the appropriate rou-
tines to compile, including selection among the choices above, using the rules
below. Some Borland C++ project files are included, but they are not necessar-
ily configured correctly for your hardware... please use the options menu to
review the settings for the compiler. You will probably want to use the
"large" memory model and optimization for fastest code, but are free to use
other choices.

The files to compile and link for ALL types of problems are the
following:
bignum.c bigcomb.c checkhdr.c checkrd.c
checkwt.c ffscanf.c generate.c memory.c
mixedrep.c random.c report.c statisti.c
utility.c

In the same directory must be the #include files:
sga.h (#included in mainone.c or mainmany.c)
external.h (#included in most other .c files)
sgafunc.h (#included in sga.h and external.h)
sgapure.h (#included in sga.h and external.h)

One must also choose EXACTLY ONE APPLICATION FILE:
 app.c app1.c apphybxx.c
 app2.c approyrd.c app0to9.c
 appbtsp.c app1perm.c appmatch.c
 app1posn.c apprally.c appautmx.c
 app1both.c appmansq.c
 appxxxxx.c (your problem, made by modifying the app form supplied).

plus a choice of EXACTLY ONE SELECTION METHOD FROM:
 rselect.c srselect.c rnkslect.c
 suselect.c tselect.c

plus a choice of EXACTLY ONE CROSSOVER OPERATOR:
 oneptx.c (for non-permutation problems)
 twoptx.c (for non-permutation problems)
 unifx.c (for non-permutation problems)
 uobx.c (for permutation or "mixed" problems)
 ox.c (for permutation or "mixed" problems)
 cx.c (for permutation or "mixed" problems)
 pmx.c (for permutation or "mixed" problems)

Erik D. Goodman, Michigan State University

-60-

future releases of GALOPPS.

2) add new operators and/or selection methods without changing the structure of
the other routines which call them. In that case, the author can still assist
with bugs in the original system, if they occur with the original operators/
selection methods. If you add useful routines, the author would be happy to
receive them for possible inclusion in future releases of the system. Upgrade
to new releases of GALOPPS should still be very easy.

3) freely modify the content and structure of any of the routines in the sys-
tem. This provides the greatest freedom, but the author will no longer attempt
to assist in fixing any bugs discovered in such a modified system, unless you
also demonstrate them in the unmodified code. However, the author will be
pleased to learn of and/or receive copies of any such enhancements which are
found to be useful.

 Compiling/Linking the System

The systems have been run on many Unix, DOS, Windows, and Macintosh systems. A
makefile is provided for each program (mak?????.one and mak?????.man for single
and multiple subpopulation systems, respectively). If your system cannot use
these makefiles directly, they may still be used as documentation of the mod-
ules required for compiling and linking of each system. A few additional make-
file examples are included for compiling particular application problems.

For Borland C++ users on PC's, sample project files (.prj) have been
included for all applications. You should first copy all files from the dis-
tribution diskette to a directory GALOPPS2.35 on your hard disk. USE CARE to
be sure that the compiler options are set appropriately for your hardware con-
figuration before you use these files to compile the system. You will want as
much RAM as possible available to the GA, if you want the good performance pro-
vided by larger population sizes. You might want to set optimization for speed
if your compiler allows that.

To change the problem being solved, the file appxxxxx.c or or appautmx.c or
apphybxx.c (or one of the other app files) must be edited to create the new
problem file. Other files need not be changed. It is suggested that the user
create a copy of appxxxxx.c, called appmine.c (for example), and then edit the
makefile to set the APPCODE and APPOBJ to the appropriate filenames (appmine.c
and appmine.o, for example).

Just as in the original SGA-C, to change the method of selection (among
roulette wheel, stochastic remainder selection, stochastic uniform sampling,
tournament selection, and rank-based selection), just uncomment the appropri-
ate set of two lines in the makefile (Unix systems) or include the appropriate
filename (DOS systems). File rselect.c is roulette wheel selection; srselect.c
is stochastic remainder selection, suselect.c is stochastic uniform sampling
(usually recommended over the first two), tselect.c is tournament selection,
and rnkslect.c is rank-based selection. Similarly, uncommenting the appropri-
ate pair of lines chooses among the various crossover operators (oneptx.c,
twoptx.c, unifx.c, uobx.c, pmx.c, cx.c, and ox.c) and the various mutation
operators (bitmutat.c, swap.c, and scramble.c).

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-59-

 CODE DISTRIBUTION FORMAT

GALOPPS/Onepop and /Manypops share nearly all files -- the exceptions are the
main programs (each has its own, labeled mainone.c and mainmany.c, respec-
tively) and initialization routines (startup.c for Onepop and initsubp.c for
Manypops), plus file master.c only for Manypops. The two programs use exactly
the same application files (app.c, app1.c, app2.c, approyrd.c, appbtsp.c,
apprally.c, app1perm.c, app1posn.c, app1both.c, appxxxxx.c, etc.). They use
identical formats for checkpoint and restart files.

When editing any of the files distributed with the GALOPP System, your
TAB character should be set equivalent to 8 SPACES, to match the setting
used when the files were created. Otherwise, your listing will appear to
be strangely indented.

The 'C' code runs unmodified on Unix systems (tested on Sun4, HP 9000/7XX, DEC-
station, and NeXT systems), on PC's (tested under MSDOS 5.0 and 6.0 and under
Windows 3.1, with Borland C++, using only the 'C' features, and using Microsoft
'C'), and on Macintosh systems. A compile-time choice defining
PROTOTYPES_ACCEPTED handles the compiler differences encountered so far (ANSI-
type or the older K-R-type ’C’). The system was made so it can be compiled by
ANSI-compliant 'C' compilers with modern prototype declarations, or without
the ANSI variations. We have provided two forms of declaration for functions,
in files sgafunc.h and sgapure.h. If you leave #define PROTOTYPES_ACCEPTED
at the top of files sga.h and external.h, they will do full ANSI-style proto-
type checking. If your compiler objects to these prototypes, comment out the
line #PROTOTYPES-ACCEPTED at the top of the sga.h and external.h files. In
that case, use extra caution that the types of all arguments in any functions
you create for calling from the appxxxxx.c routines match their declarations,
for less checking is done. NOTE: On many systems, some "warning" messages
will be generated during compilation, as the "skeleton" callback structure
causes many variables to be declared which are not used, etc. This should NOT
be a cause for alarm when GALOPPS compilations are done.

For Unix systems, makefiles are included, which can easily be modified to cre-
ate whatever configuration of modules (operators, selection methods, etc.) is
desired. On DOS systems, you may use the .prj files included for Borland C/C++
compilers, or may simply follow the directions given below to compile and link
the necessary modules with whatever tools you are familiar.

How to Prepare the GALOPP System for Solving YOUR Problem

The author ENCOURAGES users to use this system as a basis for development of
their own genetic algorithm applications and enhancements. Information about
successful or unsuccessful attempts to use/modify the system would be welcomed
by the author.

The system may be used in three ways:

1) write all of the code needed to run your GA application within one of the
appxxxxx.c or appautmx.c or apphybxx.c files. In that case, the author will be
happy to try to address bugs you may discover in the GALOPPS code, and your
application should need only minor modifications to be able to be run under

Erik D. Goodman, Michigan State University

-58-

/* from the checkpoint header file any fields added to the checkpoint */
/* header by the user. */
{
 /* See approyrd.c for an example. */
 return TRUE;
}

BOOL
app_malloc_utility_field(utilityfield)
/* Needed whenever user adds utility fields to the chromosome. */
/* Otherwise, may be blank. */

int **utilityfield;

/* Application-dependent callback routine user may use for mallocing */
/* space for the utilityfield (if used). */
{
 /* See approyrd.c for an example. */
 return TRUE;
}

void
app_copy_utility(dest, source)
int *dest;
int *source;

/* Application-dependent callback routine user may use for copying any */
/* utility fields used from one place to another. Program cannot know */
/* how you structured utility fields, so you provide the code here to */
/* allow the program to copy them as needed. */
{
 /* See approyrd.c for an example. */
}

BOOL
app_read_best_utility(fp)
FILE *fp;

/* Application-dependent callback routine user may use to read the */
/* best utility field from the checkpoint header file. */
{
 /* See approyrd.c for an example. */
 return TRUE;
}

BOOL
app_write_best_utility(fp)
FILE *fp;

/* Application-dependent callback routine user may use to write the */
/* best utility field to the checkpoint header file. */
{
 /* See approyrd.c for an example. */
 return TRUE;
}

int
GetUtilitySize()
/* Application-dependent callback routine user must use to tell program */
/* the size of the utility field user mallocs for each chromosome. Used */
/* to compute the amount of space needed per individual in the checkpoint */
/* files. */
{
 /* See approyrd.c for an example. */
 return 0;
}

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-57-

void
app_generate()
/* Complete application-specific actions NEEDED as part of making a new */
/* generation (typically involving UTILITY fields the user has added). */
/* Examples include any transfer of parts of structures 'individual' or */
/* bestever which were added for this application. This routine is a place */
/* where, for example, copy operations may be done from parents to children */
/* for ALL kids which were NOT evaluated this generation (i.e., no crossover*/
/* or mutation was done to create them, so objfunc was not called.) So */
/* the fields usually filled in by obj_func when a NEW individual is */
/* generated can be copied from the parent here, instead. */

{
 /* See approyrd.c for an example. */
}

void
app_stats(pop)
/* Application-dependent statistics calculations called by statistics() at */
/* the end of each generation. */
/* The call follows each generation, so can be used to update any UTILITY */
/* values for the bestever structs, by copying them from the individuals */
/* which still contain them, for recording and reporting. */
struct individual *pop;
{
 /* See approyrd.c for an example. */
}

BOOL
app_write_utility(UtilityBuf, fp)
int *UtilityBuf;
FILE *fp;

/* Application-dependent callback routine user may use for writing the */
/* contents of the utility field (if needed) into a checkpoint file. */
{
 /* See approyrd.c for an example. */
 return TRUE;
}

BOOL
app_write_ckp_hdr(fp)
FILE *fp;

/* Application-dependent callback routine user may use for writing */
/* any needed app-specific variables into a checkpoint file. */
{
 /* See approyrd.c for an example. */
 return TRUE;
}
BOOL
app_read_utility(UtilityBuf, fp)
int *UtilityBuf;
FILE *fp;

/* Application-dependent callback routine user MUST provide for reading the */
/* contents of the utility field from a checkpoint file, if utility fields */
/* were written there by app_write_utility(). */
{
 /* See approyrd.c for an example. */
 return TRUE;
}

BOOL
app_read_ckp_hdr(fp)
FILE *fp;
/* Application-dependent callback routine user may use for reading back */

Erik D. Goodman, Michigan State University

-56-

/* desired actions in routine app_when_converged() below. */
int * flag;
int * num_to_replace_if_converged;
{
}

void
app_when_converged()
/* This routine is called if user's routine (above) app_decide_if_converged */
/* ever sets its flag to 2. The intent is that user can here stop a run, or */
/* change any GA parameters as desired, for the current subpopulation, etc. */
{
}

void
app_quiet_report()
 /* Routine to be called when other output is suppressed, to check for
 * trigger for special user-defined output, or to print desired output even
 * when running in quiet mode. Helpful when doing many long runs. The
 * parameters passed are to enable checking for last generation of a
 * Manypops run, for example, in case want to reset quiet to 0 for a final
 * summary printout, etc. */

{
 /* Below, supply any logic and printing to be used in quiet mode
 * operation, when most other normal output is suppressed. */

 /* for example, print warning ONE TIME if quiet flag is on, so user knows
 * why doesn't get any output. */
 if(quiet < 3 && popno == 0 && cycle == 0 && gen == startgen)

 fprintf(outfp, "\n Flag quiet > 0, normal output suppressed.\n");

 /* Sample logic below starts full printing at end of next-to-last */
 * generation of last cycle, for final summary. (Works for GALOPPS/ */
 * Onepop (ncycles == 0) and GALOPPS/Manypops) */
 /* To enable this logic, remove comment delimiters on next line. */
 /* if((cycle == ncycles - 1 || ncycles == 0) && gen == maxgen - 2)
 quiet = 0; */
}

void
app_new_global_best_report()
/* Application-dependent report, called by globalstats() in statisti.c when */
/* GALOPPS/Manypops is run (not used by GALOPPS/Onepop runs). */
{
 /* User can print from utility fields, call output routines, etc. */
 /* to print whatever information is wanted when a new best individual of */
 /* all populations on all processes (processors) is found. Since the */
 /* performance measures, etc., have NOT yet been updated in the .stt */
 /* file, user should now output local_bestfit.xxxxx, etc., not yet */
 /* all_pops_bestfit.xxxx, which will be updated AFTER this print is done.*/
 /* Use of this callback is OPTIONAL. */

}

void
app_print_strings()
/* Application-dependent string printer, called by report() just after it has */
/* finished printing the chromosomes in "standard" binary format. */
{
}

void
app_conv_rept()
/* Application-dependent report, called by reptconv() (in report.c) */
{
}

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-55-

void
app_initreport()
/* Application-dependent initial report called once by initialize() */
{
}

void
app_malloc()
/* application dependent malloc() calls, called once by initmalloc() */
/* If use utility fields, must malloc here for all newpop, oldpop. */
{
}

void
app_free()
/* application dependent free() calls, called by freeall(). Be sure you are */
/* really done with things before you free them. */
{
}

void
app_malloc_bestever_utility()
/* If you use utility fields (i.e., additional variables for each individual */
/* you must malloc them for each chromosome in app_malloc(), */
/* and you must ALSO malloc the utility fields for variables declared as */
/* struct bestever, below in this routine. */
/* Note: they are never freed, so should be done only once, using */
/* static flag "bestever_utilities_mallocd" to test. */
{
/* static BOOL bestever_utilities_mallocd = FALSE; */
 /* Malloc below done only first time, since its memory is never freed */
 /* except when process terminates. */
/* **** DUMMY TEMPLATE GIVEN BELOW, COMMENTED OUT -- NOT USED FOR THIS APP */
/* if(!bestever_utilities_mallocd) {
 bestever_utilities_mallocd = TRUE;
 if ((bestfit.utility =
 (int *) malloc(sizeof(struct WHATEVER_YOU_USE))) == NULL)
 nomemory("bestfit utility");
 if ((local_bestfit.utility =
 (int *) malloc(sizeof(struct WHATEVER_YOU_USE))) == NULL)
 nomemory("local_bestfit utility");
 if ((all_pops_bestfit.utility =
 (int *) malloc(sizeof(struct WHATEVER YOU USE))) == NULL)
 nomemory("all_pops_bestfit utility");
 }
*/
 return;
}

void
app_report()
/* Application-dependent report, called each generation by report() */
{
 /* Normal app-dependent end-of-generation printing done here. */
}

void
app_decide_if_converged(flag, num_to_replace_if_converged)
/* This routine is called at the end of each generation of each subpopulation */
/* to give the user the option of checking for convergence of the */
/* subpopulation, or other condition. When (if) that happens, if user wants */
/* simply to reinitialize all or part of the subpopulation to random values */
/* and keep running, user can just set flag to 1 and set */
/* num_to_replace_if_converged to the desired number to reinitialize. If */
/* user wants to take some other action, should set flag = 2 and code the */

Erik D. Goodman, Michigan State University

-54-

 if (firstcall) {
firstcall = 0;

 }
}

void
app_data(REVISING)
BOOL REVISING;

/* Application dependent data input, called by init_data() */
/* Ask your input questions here, and put output in global variables */
/* NOTE: This routine is called only once if the flag */
/* all_subpops_use_same_parameters is TRUE. For actions that should be */
/* done for each subpopulation whether or not they are using the same */
/* parameters, use app_init, instead. */
{

 if (REVISING)
return;

}

void
app_init(user_supplied_initialization)
/* application dependent initialization routine called by initialize() */
/* for EACH subpopulation, whether started from input or restarted from */
/* a restartfile. */
BOOL user_supplied_initialization;
{

 user_supplied_initialization = FALSE; /* Make it TRUE if you will supply */
 /* the code to initialize the */
 /* individuals in oldpop below, in */
 /* routine app_user_init_pop(), */
 /* instead of using one of the */
 /* "standard" methods supplied with*/
 /* GALOPPS. */

 elitism = 1; /* Must set to 0 or 1 to determine whether or not
 * best indiv. is always preserved in next generation
 * (1 = yes). */
 stochastic = 0; /* Must set to 0 or 1 to specify whether or not
 * fitness function always returns same value for a
 * given chrom.-- If always same, set stochastic = 0
 * to avoid extra evaluations; if changes with env't
 * or randomly, set = 1 */
}

void
app_user_init_pop(starting_guy_index)
/* If none of the standard methods supplied with GALOPPS will work for */
/* initializing the individuals in oldpop at start of run, or for creating */
/* new "random" guys when popsize is expanded, or when convergence triggers*/
/* partial re-initialization, etc., then you can create the individuals */
/* here, filling oldpop[starting_guy_index] through oldpop[popsize-1]. */
int starting_guy_index;
{
}

void
app_after_random_init()
/* Application-dependent changes or redoing of initialization, called after */
/* the random initialization is performed and (on restart) individuals have */
/* been read in from restart file. */
{
}

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-53-

they are called, and some of their typical uses are described below.

The standard application template file, appxxxxx.c, is shown below, with additional
explanatory comments. The user may want to compare this file with other application file
examples (such as app.c, approyrd.c, etc.) to see how the various callbacks are used in
particular cases.

/*--*/
/* appxxxxx.c - application dependent routines, "fill in the blanks" to */
/* define your problem for solution by GALOPPS. Any functions */
/* not needed may simply be left "as is." */
/*--*/

#include <math.h>
#include "external.h"

static int firstcall = 1;

void
objfunc(critter)
/* Application-dependent objective function. THIS IS THE ONLY ROUTINE THE */
/* USER ABSOLUTELY MUST FILL IN TO DEFINE THE USER'S PROBLEM. OTHERS ARE */
/* OPTIONAL, DEPENDING ON THE NATURE AND COMPLEXITY OF THE PROBLEM. */

/* This is where you code the objective function for your particular problem, */
/* getting the genotype from critter->chrom, and then placing the */
/* raw (unscaled) fitness for critter into critter->init_fitness. */
/* Another action which must be accomplished is to increment the current */
/* evaluation number (neval) and record it in critter->neval. */

struct individual *critter;
{

 neval++;
 local_cycle_neval++;

 critter->neval = neval;

 /* The LEAST that any application can do is to replace the line below */
 /* with a valid statement that assigns a fitness to the genotype */
 /* (chromosome) passed in (pointed to by critter). The constant below is */
 /* just so you can check that this "blank" template indeed compiles and */
 /* runs with the rest of the system as you have configured it. */

 critter->init_fitness = 10.

}

void
application()
/* This routine should contain any application-dependent computations */
/* that should be performed at the beginning of each generation of a */
/* GA population or subpopulation. Called by main(), after the */
/* population is initialized, within the main "generation" loop. */
{
}

void
app_read_prob_params(REVISING)

BOOL REVISING;

/* Application-dependent data input, called by init_data() BEFORE it reads */
/* the "standard" fields like numfields, numextrafields, lchrom, etc. */
/* That means user can read them from a file, for example, HERE, and if they */
/* are set here, the initialization routine WON'T ask for them again. */
{
 if(REVISING)
return;

Erik D. Goodman, Michigan State University

-52-

Applications, using the Automix Utility to Define Representation

For hybrid or mixed-type applications (i.e., where both an optimal ordering of
some fields and values for some parameters are sought), this template,
appautmx.c, should be used instead, as it is already prepared to interface with
the automix.c program for definition of the permutation subfields and position
subranges needed. In this form, the hybrid representation is much easier to
use than in the older (but still available) form below, apphybxx.c, which used
the mixsetup.c utility instead of automix.c.

The alleles in the fields to be permuted are made available to the fitness
function in array permarray[], and the real-valued variables are in array
value[i]. The user needs only to use them to calculate a fitness, and to
return that from decodemixedchrom() for assignment to the unscaled fitness
variable, critter->init_fitness.

APPHYBXX.C -- A "Blank" Template for Development of New Hybrid
GALOPPS Applications (Using Mixsetup.c)

For hybrid or mixed-type applications for which the automatic utility for
defining the representation, automix.c, may not be sufficiently flexible, the
user may instead use this template, apphybxx.c, and the companion standalone
utility program,mixsetup.c, for definition of the permutation subfields and
position subranges needed. In this case, the user should probably first
explore the hybrid representation using another standalone program, mixtu-
tor.c, which demonstrates representations without preparing an output file.
However, the user is strongly encouraged to use automix.c, instead, unless the
"guts" of the representation are of great interest.

 CONTENTS OF USER'S APPLICATION-SPECIFIC FILE (APPxxxxx.C)

GALOPPS offers the user a wide range of options for definition of BOTH the
problem to be solved and the GA techniques to be used to solve it. Some choice
of GA techniques is made by selection of crossover operator, mutation operator,
and selection method when the code is compiled (i.e., in the makefile, project
file, etc.) and by setting of input parameters (type and magnitude of scaling,
problem type, etc.). These are "standard" choices the user makes. The user
can also "customize" the system for the particular problem, via problem-spe-
cific output, alteration of control logic, addition of genetic operators, etc.
-- in MOST cases, WITHOUT having to alter the GALOPPS code at all EXCEPT within
the user's application-definition file, which is usually written starting from
template appxxxxx.c. This template contains two things:

1) a placeholder function, called objfunc(), in which the user MUST define the
fitness function used to evaluate a chromosome, and

2) many "callback functions," which the user may COMPLETELY IGNORE if the
"standard" output, program control, and representations are to be used, but
which the user MAY use to perform problem-specific I/O, initialization, dynamic
alteration of GA parameters, addition of "utility" fields to the chromosome,
addition of state variables to be saved and restored with each subpopulation's
checkpoint file, and many other actions. These functions, the places where

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-51-

Fuel consumed above or below 800 liters: -10 points/liter.
Specific fuel consumption: -1 point/(liter/100 km) Driver
rest period length: +1 point/hour.

Note that the problem is being solved "blind" -- that is, the program has no
knowledge of the distances between cities, but instead learns the amount of
fuel consumed and the time elapsed only at the completion of the tour. The
variables being solved for are 1) the order of the tour (order of n cities), 2)
the optimal horsepower for the vehicle, 3) the average speed to be driven dur-
ing daylight, which is to be held approximately constant during the tour, 4)
the length of the driver's rest period, and 5) the time (in minutes into the
race) when the driver's rest period begins. A "nonsense" variable, entitled
"radiovolume," is also included in the encoding/decoding scheme, simply to
illustrate that the user may map unused fields to anything (or nothing), and to
watch the effects of the GA operations on a field which HAS NO EFFECT ON THE
FITNESS FUNCTION. NOTE: For simplicity, the objective function assumes that
the elapsed time is always at least 10 hours, and there is only ONE night
period, even if the race lasts beyond 27 hours.

Random placement of checkpoints for example problems can be created using using
the accompanying 'C' main program, cre8rall.c. It creates the distancebetween
table, including generating a random start/finish point and its distances as
entries (with subscript [numcities]) in the table. This table-creating program
can be compiled using the command in file
cre8rall.mak (on Unix systems), or using the .prj file in Borland C.

The values for horsepower, average speed, resttime, reststart, and radiovolume
are encoded on the chromosome indirectly, via the "extra" fields, as follows:

permsubfield[0]: determines dayspeed
permsubfield[1]: determines resttime
permsubfield[2]: is "thrown away" or ignored
posnsubrange[0]: determines horsepower
posnsubrange[1]: determines reststart
posnsubrange[2]: determines radiovolume (printed, ignored)

APPXXXXX.C -- A "Blank" Template for Development of New
"Ordinary" GALOPPS Applications

A copy of this code should be used as the template for development of a new
"ordinary optimization" application, unless the user finds another example
application provided is closer in form to the new problem to be solved. For
hybrid or mixed-type applications (i.e., where both an optimal ordering of some
fields and values for some parameters are sought), template apphybxx.c should
be used instead, as it is already prepared to interface with the mixsetup.c
program for definition of the permutation subfields and position subranges
needed.

For many applications, the user will need only to type in a few lines in the
objfunc(), and can use the remainder of the file without alteration. As appli-
cations become very complex, more of the facilities will need to be utilized.

APPAUTMX.C -- A "Blank" Template for Development of New Hybrid
GALOPPS

Erik D. Goodman, Michigan State University

-50-

two different possibilities for calling function combineindices, and also
specifying fitness as simple sums or products of the two indices. Each has its
own advantages and disadvantages, and is helpful in understanding the behavior
of this representation. In order to encourage this, code fragments for all
methods are included in the file, with three of the four commented out.

APPRALLY.C -- A Road Rally Optimization Problem Illustrating
Solution of
 "Mixed" Problems Involving Simultaneously Permutation and Non-
 Permutation Elements, and Using Both Permutation Subindices and
 Position Subindices

Apprally.c demonstrates the use of mixed-type problems(i.e., those which
include both fields to be permuted and ordinary numerical fields to be
optimized. It uses a single, unified, permutation-type representation on the
chromosome, which is then decomposed into the permutation fields and the
"extra" fields, which are, in turn, "decoded" into values for integer and/or
float variables. It uses a set of functions created for this purpose by Erik
Goodman, for inclusion with the GALOPP System. This example solves an illus-
trative problem, a road rally race with rules defined as follows:

Find the optimal path which passes all of n checkpoints ("cities")
exactly once, returning to the starting point with the goals that
the total elapsed time be 24 hours, the total fuel consumed be
exactly 800 liters (or litres), the specific fuel consumption (sfc,
in liters/100km) be minimized, and the length of the driver's rest
period be maximized. Part of the optimization problem is to select
the most appropriate horsepower for the vehicle, in order to achieve
the required fuel consumption. Of course, that in turn depends on
the route selected, the amount of rest time to be taken, etc. An
additional constraint makes the problem somewhat harder to solve:
When driving at night (which is 7 hours long, and begins 3 hours
into the race), the car is limited to maintaining an average speed
of exactly 80 kilometers/hour. The average speed to be driven (when
not resting) during the daytime portion of the race is assumed to
be approximately constant (and is called "dayspeed"), and affects
not only the elapsed time, but also the fuel consumption. Fuel
consumption is assumed to be related to speed (for each of the two
speeds, day and night), depending on horsepower selected for the
car, by the formula:

 liters/hour used = 20. * ((speed in kph)/horsepower) ̂ 2 + 0.25
* (speed in kph)

* sqrt(horsepower/100.) + 4.0
Points are awarded as follows:
Incomplete tour: 0 points total (but excluded by solution method).

Complete tour: 100,000 points, minus penalty points for time
difference from 24 hours, for fuel consumption difference from 2,000
liters, and for specific fuel consumption, and plus bonus points for
driver rest time, as follows:

Elapsed time above or below 24 hours: -10 points/minute.

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-49-

40,320 possible values for the permutation index, which maps to about 15 bits
of resolution for the single parameter in this problem. For a longer search
problem for comparison with app1.c, you could use 12 fields, which yields about
479 million distinct codes, or about 28 bits of resolution. (App1.c is can be
run using 28 bits, also).

The user will find that the performance of the GA with this representation will
depend STRONGLY on which of the 4 supplied permutation-type crossover operators
is used. Operators uobx.c and pmx.c definitely perform better than cx.c or
ox.c for this problem.

Of course, for other problems, these permutation index values (or others) can
be divided into several "subfields" representing different parameters, and
each subfield may be mapped to a finite set of real numbers over some interval,
if needed. Also, the permutation index and the position index can both be
used, for more efficient encoding.

APP1POSN.C -- Goldberg's First Problem, But Using a
Position of Extra Fields (Combinations) Representation

This is a simple illustration of using a permutation-type representation and
the associated operators to solve a problem which is NOT inherently a reorder-
ing problem. The user is prompted for a number of fields to use, which deter-
mines the resolution (and size of the search space) of the problem. It uses
only the positional encodings (positions of the "extra" fields on the chromo-
some) to represent the ordinary parameter, and uses "dummy" fields to represent
the "perm" fields ("cities", etc.), since there are no true permutation fields
being sought in this demonstration problem. (See section on "Mixed-Type Prob-
lems" for an explanation of these concepts). For example, selecting 16 "dummy"
perm fields and 16 "extra" fields (i.e., 32 total fields) yields combina-
tions(32, 16) or about 601 million possible values for the position index,
which maps to about 30 bits of resolution for the single parameter in this
problem. Thus, its behavior cam be compared to app1.c when run with a chromo-
some length of 30 bits.

As with app1perm.c, the performance of the GA will vary strongly, depending on
which crossover and mutation operators are used. It is suggested that the user
"play" with these with these two applications, and also with use of both indi-
ces simultaneously in apprally.c.

Of course, for other problems, these position index values (or others) can be
divided into several "subranges" representing different parameters, and each
subrange (or subindex) may be mapped to a finite set of real numbers over some
interval. Also, the position index and the permutation index can both be used,
for a more efficient encoding.

APP1BOTH.C -- Goldberg's First Problem, But Using Both
Permutation Index and Position Index Representations

This problem is essentially a combination of app1perm.c and app1posn.c, and is
particularly useful for studying the effect of various crossover operators and
selection and scaling methods on the hybrid or mixed-type representation. The
user is invited to modify the means of combining the two indices, exploring the

Erik D. Goodman, Michigan State University

-48-

APPMATCH.C-- A Hybrid Representation Example Using Automix Setup

File appmatch.c provides a testbed for using the automix tools. It is built
from appautmx.c, and defines a fitness function which is optimized when the
fields to be permuted are in increasing numerical order, and the real-valued
variables have values matching the corresponding permutation field’s value.
For example, 0,1,2,3,4,5,6 and 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 represents a
perfect solution to a length 7 problem. However, this function can easily be
made easier or harder to solve by changing the definition slightly. if the
real-valued fields are rewarded for matching the absolute field number (i.e.,
0.0 is always best for the first position), it is much easier than if the
reward is for matching the corresponding numbered field (i.e., 2.0 matches a 2,
wherever it is located on the chromosome, which is the default formulation.)
As distributed, the function is:
antifitness = 0.10 * fabs(value[i] - permarray[i]) + abs(permarray[i] - i).
Then fitness is calculated by inverting antifitness, so long as antifitness is
non-zero. Automix must be run before this problem can be run, and sample input
parameters to automix are listed in comments at the top of their associated
Onepop and Manypops sample input files, appmatch.in and appmanc8.in.

APPMANSQ.C -- A Manufacturing Job Sequencing Problem with
Variable Speedup:
The next example is of a manufacturing sequencing problem. In this problem,
the answer sought is the best ordering of manufacture of n jobs, where each job
can have its manufacturing time reduced by devoting more "effort" (at a higher
cost) to it. Thus, the answers desired are the best order (a permutation of
the jobs) and the best speedup for each job. The input parameters defining the
problem are the "normal" time for each job, its shortest time (with maximum
speedup), its cost per unit time of speedup, its time due for completion, and
the cost per unit time for completion after the time due. The objective func-
tion to be minimized is the sum of the speedup costs and the total tardiness
penalty, which is the sum of the time each job is late times its tardiness cost
per unit time. The fitness, which must be maximized, is defined as the recip-
rocal of the cost (i.e., 1/cost). An auxiliary program, makmanuf.c, can pro-
vide a suitable set of input parameters in a file. An alternative program,
makmanko.c, provides similar inputs, but with a known optimum solution. Pro-
gram automix must be run to set appropriate perm subfields and position sub-
ranges. Inputs to automix for the sample input files are shown in comments at
the top of those input files, apprally.in and rally9po.in.

APP1PERM.C -- Goldberg's First Problem, But Using a
Permutation Index Representation

This is a simple illustration of using a permutation-type representation and
the associated operators to solve a problem which is NOT inherently a reorder-
ing problem. The user is prompted for a number of fields to use, which deter-
mines the resolution (and size of the search space) of the problem. It uses
only the permutation encodings to represent the ordinary parameter, rather than
using the "extra field position" encoding as well, since there are no "true"
permutation fields in this problem (see section on "Mixed-Type Problems for an
explanation of these concepts). For example, selecting 8 fields yields 8! or

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-47-

in developing GALOPPS). For a description of these three applications, see
APPENDIX SIX, documentation for the ORIGINAL SGA-C, v1.1.

However, in order to introduce the user to many of the new features of the
GALOPP System, this release contains many additional example files, including
appmatch.c, app0to9.c, approyrd.c, appbtsp.c, app1perm.c, app1posn.c,
apprally.c, and 3 "generic" templates for new applications, appxxxxx.c,
appautmx.c, and apphybxx.c. SOME OF THESE APPLICATIONS REQUIRE THAT THE USER
FIRST RUN A STANDALONE PROGRAM TO CREATE THE PARAMETER FILE DESCRIBING THE PAR-
TICULAR PROBLEM, OR A FILE DESCRIBING THE DETAILS OF THE REPRESENTATION (FOR
HYBRID PROBLEMS). IF YOU WISH TO RUN THE SAMPLE INPUT FILES AS PROVIDED, YOU
SHOULD LOOK IN APPENDIX 4 FOR INFORMATION ABOUT THE INPUTS TO BE ENTERED INTO
THE STANDALONE SETUP PROGRAMS IN ORDER TO PREPARE FOR THE USE OF THE SAMPLE
INPUT FILE. LOOK ALSO AT THE TOP OF EACH INPUT FILE FOR INFORMATION ABOUT RUN-
NING AUXILIARY PROGRAMS BEFORE RUNNING THE APPLICATION.

Each application is described briefly below:

APPROYRD.C -- The Royal Road Function

John Holland's 1993 Royal Road Function (challenge problem to attain Royal Road
level 3 within 10,000 function evaluations) has been coded as a GALOPPS appli-
cation example, and is very useful for learning how to select the most appro-
priate options and tune the parameters of a GA, especially for a binary
representation problem. It is difficult to meet Holland’s challenge for opti-
mization of this function in the required number of evaluations.

APP0TO9.C -- A Non-Binary Alphabet Demonstration Problem

File app0to9.c illustrates the use of a non-binary alphabet.. This application
searches for the single best string of length numfields, of the form:
 0,1,...,m-1,0,1,...,m-1, ... 0,1,...k,
where m is the user-specified alphabet size. There is no upper limit imposed
on either k or m, although it will likely not work with 2**m > MAX_UINT. The
user enters the alphabet size and the number of fields, and the program ini-
tializes each field to a legal value between 0 and alpha_size-1. All crossover
operators (oneptx, twoptx, and unifx) perform crosses ONLY at the boundaries
between fields, and mutation changes one field to a different legal value.

APPBTSP.C -- A Blind Traveling Salesman Problem

The tools for using the permutation-type operators in this release are illus-
trated in appbtsp.c. The user may generate a set of randomly placed cities
using a freestanding program called cre8btsp.c (the command for compiling it is
in file cre8btsp.mak). The program writes a table which contains the distances
between all n (user-input) cities. When running the appbtsp.c application, the
user is asked for the name of this distance table. The GALOPPS program then
searches for the shortest path among all of these cities (no mandatory starting
point is given, so there are n equivalent paths, one for each starting point).
As with any reordering-type problem, the user may select a favorite crossover
operator and permutation operator at compile time, in the makefile (Unix sys-
tems) or project file (PC systems).

Erik D. Goodman, Michigan State University

-46-

 GENERAL FORMAT FOR A MASTER FILE

 FULLY GENERAL VERSION (ARBITRARY PATTERN)
SAMPLE MASTER FILE: | EXPLANATION:
subcnt = 4 | There are 4 subpopulations
subpop = 0 2 | Subpop 0 has 2 neighbors

neighbor = 1 2 | gets, from subpop 1, 2 randomly chosen chrom's
neighbor = 3 2 | gets, from subpop 3, 2 randomly chosen chrom's

subpop = 1 1 | Subpop 1 has 1 neighbor
neighbor = 0 -1 | He gets, from subpop 0, its one best chrom

subpop = 2 2 | Subpop 2 has 2 neighbors
neighbor = 3 2 | gets, from subpop 3, 2 randomly chosen chrom's

neighbor = 1 -2 | gets, from subpop 1, best + 1 randomly chosen chrom
subpop = 3 1 | Subpop 3 has 1 neighbor

neighbor = 0 2 | gets, from subpop 0, 2 randomly chosen chrom's

 SHORT VERSION (SYMMETRICAL PATTERN)
SAMPLE MASTER FILE: | EXPLANATION:
subcnt = -4 | There are 4 subpops; "-" means all use same pattern
subpop = 0 2 | Subpop 0 has 2 neighbors

neighbor = 1 2 | gets, from subpop 1, 2 randomly chosen chrom's
neighbor = 3 2 | gets, from subpop 3, 2 randomly chosen chrom's

General Format for Master File:

subcnt = <number of subpops> or -<number of subpops>
subpop = <subpopindex> <numberofneighbors>
 neighbor = <subpopindex> <FLAG>
 etc.

where subcnt, if negative, means that the neighbors will be specified for only
ONE subpopulation, and all others will use CORRESPONDING patterns (modulo
npops, and neighbor patterns "wrap around" so that subpopulation "npops" is
really subpopulation "0", etc.

and FLAG means:
 if positive, the number of randomly chosen individuals to read
from the specified neighbor's file;
 if zero, no chromosomes are to be read from that neighbor;
 if negative, the BEST chromosome is to be read, plus |FLAG|-1 additional
randomly chosen individuals (so -1 means best only, -2 means best and one
other, etc.).

For simplicity, the master file is stored in memory as a fixed-size table,
holding a maximum of 50 subpopulations. This is readily alterable by the user,
if needed.

 NEW EXAMPLE PROBLEM FILES

The SGA-C v1.1 release from which this software was developed contained three
example files: app.c, app1.c, and app2.c. These are also included in this
release (in a modified form, of course, for compatibility with the changes made

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-45-

On MULTIPLE processors, or using multiple copies of Manypops on a single pro-
cessor (in a Unix environment, for example), the subpopulations are run with
exactly the same sort of intercommunication and execution, but if multiple pro-
cessors are used, more than one subpopulation may be in execution AT THE SAME
TIME (true parallelism). This new capability of Release 2.20 and beyond is
described more fully below.

Regardless of the mode of execution (one process or many processes or many pro-
cessors), each subpopulation has individual control over all of its own param-
eters, including the number of generations to run in each cycle, population
size, etc. However, some properties (like chromosome length, etc.) are shared
among all subpopulations, since individuals must be able to pass from one sub-
population to another. The exchange of individuals between subpopulations is
specified by a new form of text file, called a "master" file, *.mst. The mas-
ter file is a table which contains the number of subpopulations, and for each,
its number of neighbors, followed by the number of each neighbor, and how many
individuals (and how chosen) are to be read from that neighbor. A SHORT ver-
sion is also available for situations when the pattern of migration is to be
identical for ALL subpopulations (for example, each subpopulation n reads the
best individual from the subpopulations numbered n-1 and n+1 (modulo npops, the
number of subpopulations). Details follow the example:

Erik D. Goodman, Michigan State University

-44-

evaluations than higher-numbered subpopulations). To avoid this, chromosomes
are always read from .ind files, and the .new files do not replace the .ind
files until the END OF EACH CYCLE. This allows all neighbors to be treated
"equally;" it also means that, should a run be INTERRUPTED DURING A CYCLE, the
user may do a simple restart by throwing away all .new files and restarting at
a cycle boundary from the .ind files.

A similar procedure, in which the state of the program is saved in .neu files,
then renamed to .ckp files at the end of the cycle, is done to assure that
restarts may always be done from the beginning of a cycle, using only the .ind
and .ckp files, and all .neu and .new files can be discarded or ignored.

During the running of GALOPPS/Manypops, at the end of any subpopulation's
cycle in which it achieved a new global best (unscaled) fitness, the program
prints a special output message describing the individual found. The user may
find it useful to scan output files for these special lines, which are the only
ones containing the word "Achieved", to track the progress of the entire set of
subpopulations.

 ISLAND PARALLELISM --
 GALOPPS/MANYPOPS FOR SIMULATION OF MULTIPLE SUBPOPULATIONS

A major capability of the GALOPPS system is the capability to simulate a number
of "island" subpopulations running in parallel. The capability is provided
using a second "main" program, Manypops, and different initialization rou-
tines. All other code, and user files, are common or compatible between the
single population and parallel subpopulations systems. The single-population
version, called GALOPPS/Onepop, has a checkpoint/restart capability, which
serves as the basis for the new version, GALOPPS/Manypops (an island-parallel
genetic algorithm), which allows the user to simulate parallel operation of
multiple subpopulations, with periodic interchange of individuals among the
various subpopulations. This coarse-grain parallelism is intended to assist
the user in avoiding premature convergence on difficult multimodal problems.
Files (populations) created via the checkpoint facility of GALOPPS/Onepop may
be used to initialize runs of Manypops, and vice-versa (given the proper
choices of file names).

Manypops can SIMULATE parallel subpopulations, or, in Release 2.20 and beyond,
can use multiple processors to run more than one subpopulation simultaneously,
as described below.

 PRINCIPLES OF GALOPPS/Manypops (Release 2.20 and Beyond)

GALOPPS/Manypops is built upon the checkpoint/restart capability of GALOPPS/
Onepop. When run on a SINGLE processor from a SINGLE process, it operates by
running in sequence a set of subpopulations (labeled 00, 01, 02,...), first
reading a checkpoint file for one of the subpopulations, then reading individ-
uals from "neighboring" subpopulations as specified by the user, running for a
specified number of generations, then writing a new checkpoint file. Then it
proceeds to the next subpopulation. It operates in "cycles," in which each
subpopulation receives one turn.

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-43-

 the file prefix for the new checkpoint files to be written during
 this run (if none given, the prefix specified below for restart files
 (if any) is used; otherwise, a default "sgackp" is used).

 the file prefix for the restart files to initialize each subpopulation (if
 response is "xyz", then files xyz00.ind, xyz00.ckp, xyz01.ind,
 xyz01.ckp, ..., must exist in the current directory). If response is a
 "return" (i.e., no file prefix is given), then the user is prompted for
 all of the parameters for the run from the keyboard, or input parameters
 come from the file specified in the command line, in the format
 described above under "New Format for Input Files (or as "naked"
 responses identical to keyboard input).

 the file prefix for the master file (if none is specified, default
 file prefix "master" is used. If file cannot be opened or read,

then populations are assumed to be independent (no migration).)

 IF a new run (not a restart)
 the problem type (permutation or not)

 the size of each field (alpha_size, >=2)

 the number of fields on the chromosome (numfields)

 IF a permutation problem (permproblem == 1)
 the number of extra fields (>= 0, >0 only for "hybrid" reps)

 IF not a permutation problem
 whether to use superuniform initialization or not

 whether or not all subpopulations to be run by this process use the same
 parameter values (so they are specified only once below).

 whether to complete the run without offering the user any further
 opportunity to modify the parameters of the subpopulations (this
 question is asked at the beginning of each cycle, until the user
 responds 'n' for "no"). Once this is selected, the program runs to
 completion with no further user interaction. It may not be selected in
 the first cycle if the populations are not being initialized from
 restart files.

Then, if a restart file prefix was given, the run begins; if not, of if the
user wanted to make changes, then the user enters the GA parameters for each
subpopulation in turn (from genspercycle through randomseed (first subpop) or
convinterval (subsequent subpops), and it executes its first cycle. Note that
if restarting from stored files, exchange of chromosomes with neighbors begins
with the first cycle, whereas, if the subpopulations are just being initial-
ized, exchanges will commence only at the beginning of the second cycle). When
the "individual" files are written by GALOPPS/Manypops, they are initially
labeled with the suffix ".new" to indicate that they contain the latest calcu-
lations. However, these ".new" files are not the ones read by the neighbors,
since that would typically create an assymetry between the neighbors "ahead" of
the subpopulation and those "behind" it (typically giving an unfair edge to
subpopulations with lower index numbers, because they would have completed more

Erik D. Goodman, Michigan State University

-42-

 permproblem = (y|n)
 IF (NOT defined in a file read here by user’s app_read_problem_params())
 alpha_size = nn
 numfields = nn
 IF (permproblem)

 numextrafields = nn
 IF (not permproblem && alpha_size == 2)

superuniform = (y|n)
 all_subpops_use_same_parameters = (y|n)
no_more_changes = (y|n)
WHILE (no_more_changes == no || restartfileprefix IS BLANK)
 changes_to_this_pop = (y|n) /* No, unless answered yes */
 IF (changes_to_this_pop == y || (restartfileprefix IS BLANK

 && (popno == 0 || NOT all_subpops_use_same_parameters))
/* Can specify or change any of the values below. */

 genspercycle = nn
 popsize = nnn
 printstrings = (y|n)
 pcross = [0., 1.0]
 pmutation = [0., 1.0] /* (NOTE: is probability/chromosome for

 permproblem == y, and probability/field IF not
 a permproblem) */
 scaling_window = [-1 - 20] /* (NOTE: must be -1 IF using rank-based
 selection) */
 IF (scaling_window < 0)

 sigma_trunc = [0. - ~5.0]
 scalemult = 0.0 or [1.0n - ~2.n] /* (NOTE: must be >1.0 IF

using rank-based selection. */
 crowding_factor = [0 - ~5] /* (NOTE: 0 means crowding off) */
 IF (crowding_factor > 0)

 incest_reduction = (y|n)
 conv_sigma_coeff = [0. - ~5.0]
 convinterval = [0 - ~100]
 IF (tournament selection is compiled in)

 tourneysize = n
 IF (restartfileprefix IS BLANK && popno == 0)

 USER-DEFINED INPUTS, IF ANY, (in app_data, app_input, etc.) GO HERE
 randomseed = .123

 EXPLANATION OF INPUT FOR A MANYPOPS RUN

Upon starting the GALOPPS/Manypops, the user is asked:

 the number of subpopulations,

 the number of the first subpopulation THIS process should calculate

 the number of the last subpopulation THIS process should calculate

 the number of cycles (restarts of each subpopulation) to run,

 what quantity/frequency of output is desired (the "quiet" flag, with
 settings from 0 (show all output) to 3 (show NO output).

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-41-

numfields = nn
IF (permproblem)
 numextrafields = nn
 IF (not permproblem && alpha_size == 2)
superuniform = (y|n)
maxgen = nnn
IF (strlen(restartfileprefix))
 other_changes = (y/n)
IF (!strlen(restartfileprefix) || other_changes)
/* Can specify or change any of the values below. */
popsize = nnn
printstrings = (y|n)
pcross = [0., 1.0]
pmutation = [0., 1.0] (NOTE: is probability/chromosome for
 permproblem == y, and probability/field IF not
 a permproblem)
scaling_window = [-1 - 20] (NOTE: must be -1 IF using rank-based
selection)
 IF (scaling_window < 0)
 sigma_trunc = [0. - ~5.0]
 scalemult = 0.0 or [1.0n - ~2.n] (NOTE: must be >1.0 IF
 using rank-based selection.
 crowding_factor = [0 - ~5] (NOTE: 0 means crowding off)
 IF (crowding_factor > 0)
 incest_reduction = (y|n)
 conv_sigma_coeff = [0. - ~5.0]
 convinterval = [0 - ~100]
 IF (tournament selection is compiled in)
 tourneysize = n
 IF (restartfileprefix IS BLANK && popno == 0)
 USER-DEFINED INPUTS, IF ANY, from app_data, app_input, etc., GO HERE
 randomseed = .123
IF (numberofruns > 1)
 (The same fields, beginning after numberofruns line, go here for each
 subsequent run.)

MANYPOP INPUT SPECIFICATION
/*---*/
/* appinputtemplate -- specs for sample input file for multi-population run*/
/* (Manypops), which actually doesn’t run ANY problem. The IF lines DO NOT */
/* APPEAR IN AN ACTUAL INPUT FILE. In all cases in which a default value is */
/* shown at run time, a blank line or blank in the value field can be used to*/
/* indicate acceptance of the default shown. */
/*---*/
npops = nn
startpopnum = nn [0, npops-1]
finishpopnum = nn [startpopnum, npops-1]
ncycles = nnn
quiet = [0-3]
checkptfileprefix = (blank or up to 6 characters, NOT starting with ’z’)
restartfileprefix = (blank or up to 6 characters, NOT starting with ’z’)
masterfileprefix = (blank or up to 8 characters, NOT starting with ’z’)
IF (restartfileprefix IS BLANK) /* i.e., start of new run */

Erik D. Goodman, Michigan State University

-40-

restartfileprefix =
checkptfileprefix = appckp
permproblem = n
alpha_size = 2
numfields = 10
superuniform = n
maxgen = 5
/* Parameters for first run follow */
popsize = 20
printstrings = n
pcross = .5
pmutation = 0.01
scaling_window = -1
/* Note that if scaling_window is not -1, sigma_trunc and scalemult */
/* MUST be removed or commented out, as the program will NOT try to */
/* read them. */
sigma_trunc = 0
scalemult = 1.40
crowding_factor = 0
conv_sigma_coeff = 7
convinterval = 0
randomseed = 0.345

Additional fields are required for GALOPPS/Manypops and for solving permuta-
tion-type problems. If you use tournament selection (tselect.c), you will also
need to enter a field for the tournament size for each population. If you
elect crowding (>0), you may also elect incest_reduction. In each case, if you
omit a parameter, when you run the GA, it will tell you what it was looking
for, and what it found instead, so it is easy to correct.

New in Release 2.20 and beyond, there is a SHORT form for Manypops runs, useful
if ALL of the subpopulations (to be run by the process being started) are sup-
posed to use the SAME parameters (e.g., population size, crossover rate, scal-
ing method, etc.) In that case, the user should set the parameter
"all_subpops_use_same_parameters" = y (for yes). In that case, the program
will prompt for (or read from file) the input parameters for only ONE subpopu-
lation, and will use the same values for all others. This includes the random
number seed... in this case, the random number generator just continues oper-
ating without reseeding when a new subpopulation is loaded in.

SPECIFICATIONS FOR INPUT FILES -- FOR ONEPOP AND MANYPOPS

ONEPOP INPUT SPECIFICATION
/*---*/
/* appinputtemplate -- sample input file for single-population run (Onepop),*/
/* which actually doesn't run ANY problem. The IF lines DO NOT APPEAR IN AN*/
/* ACTUAL INPUT FILE. In all cases in which a default value is shown at run */
/* time, a blank line or blank in the value field can be used to indicate */
/* acceptance of the default shown. */
/*---*/
numberofruns = 1
quiet = [0-3]
restartfileprefix = (blank or up to 8 characters, NOT starting with 'z')
checkptfileprefix = (blank or up to 8 characters, NOT starting with 'z')
IF (restartfileprefix IS BLANK) /* i.e., start of run, not restart. */
 permproblem = (y|n)
 IF (NOT defined in a file read by user's app_read_problem_params())
alpha_size = nn

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-39-

horsepower = indextofloat(permsubvalue[0],
permsubfieldmax(0,permsubdivpts)
 , 20., 400.);

resttime = indextofloat(permsubvalue[1], permsubfieldmax(1,
permsubdivpts), 0., 12.);

dayspeed = indextofloat((long)posnsubindexvalue[0],
(long)(posnsubrange[0] - 1)
 , 20., 200.);

reststart = indextofloat((long)posnsubindexvalue[1],
(long)(posnsubrange[1] - 1), 0., 20.);

radiovolume = indextofloat((long)posnsubindexvalue[2] ,
(long)(posnsubrange[2] - 1)

 , 0., 100.);

The net effect of these calls is that dayspeed is now a float variable with
posnsubrange[0] possible values from 20. to 200., etc.

File appmansq.c is another example of an application making use of the hybrid
representation, without using automix.c and appautmx.c, to solve a manufactur-
ing sequencing with speedup problem for the least cost of total speedup and
total tardiness.
 NEW FORMAT FOR INPUT FILES

GALOPPS Release 2.05 and beyond includes an optional format for input files to
GALOPPS. The user may optionally include on each input line (from keyboard or
file) the name of the parameter being entered and an "=" sign before the value.
This is not useful from the keyboard, which already prompts for input, but may
be valuable when composing disk files of input parameters for SGA. It is sug-
gested that the user prepare a template with all of the parameter names in
their correct order, and then simply fill in the values. A sample input file
is shown next in this README document. Parameters in the file must still
appear in the same order as if the keywords are not specified, but the user has
available an aid in composing the file, and the input is checked to be certain
that each field name in the file matches the field being read. When the pro-
gram detects a field DIFFERENT from what it expected, it informs the user of
what it found and what it was looking for, then exits. This makes it easy to
correct the input file. For your convenience in documenting what a file is set
up to do, or for "commenting out" unneeded fields, C-style comment lines:
/* Comment text */
are allowed in the file, but ONLY as standalone lines, not as "trailing" com-
ments.

 SAMPLE OF OPTIONAL INPUT FILE FORMATS
(Single Population Version, for solving problem app.c, for example, not a per-
mutation-type problem):

/* This is a sample input file for Onepop */
numberofruns= 1
quiet = 0
/* blank restartfileprefix means will take input from this file, not */
/* from a restart file */

Erik D. Goodman, Michigan State University

-38-

chromtointarray(tmp, critter->chrom);

permno = whichpermut(tmp,numfields);

critter->init_fitness =
 (double) indextofloat(permno, (smallfactorial(numfields) - 1)

,0.,1.0);

critter->init_fitness = pow(critter->init_fitness, (double) n);

The first call transfers numfields fields from the chromosome to an array of
ints, called tmp. The second uses tmp to calculate a (long) int, the permuta-
tion number which represents the arrangement of the fields in tmp. The third
converts that long int index into a (double) value in the range [0., 1.0], and
makes that the fitness of this chromosome. The fourth statement raises that
fitness to the power n (30 makes it like app1.c). This is all that the user
needs to add to the template appxxxxx.c in order to solve this problem using
permutation indices. It could all be done with one or two statements, but that
would be harder to follow.

2) File apprally.c solves a truly "mixed"-type problem: namely, it solves for
an optimal order of visiting a number of checkpoints (cities) while simulta-
neously optimizing the values of four other parameters which are tightly
related to the order in which the checkpoints are visited. It is NOT searching
for the shortest tour, but for one which, together with the other variables,
yields the MOST POINTS. The problem is fully described at the top of file
apprally.c, and also under "New Example Problem Files" below, but briefly, the
variables are used as follows:

permsubfield[0]: determines dayspeed (speed driven during daytime)
permsubfield[1]: determines resttime (duration)
permsubfield[2]: is defined, but "thrown away" or ignored
posnsubrange[0]: determines horsepower (max. HP rating of engine)
posnsubrange[1]: determines reststart (starting time of rest)
posnsubrange[2]: determines radiovolume (printed, ignored,demo)

All that is shown here is the mechanics of getting from the chromosome to a set
of values for the four parameters to be optimized with the tour.

/* first, get the city (checkpoint) order */
getpermfields(numcities, cities, critter->chrom);

/* next, get the permsubvalues */
getextrafields(numcities, numfields, extraarray, critter->chrom);
permuttosubindices(extraarray, numextrafields, permsubvalue, 3,
permsubdivpts);

/* next, get the posnsubindexvalues */
chromtointarray(array, critter->chrom);
getpositionsubindices(numextrafields, posnsubrange,
numposnsubranges, array
 , posnsubindexvalue);

/* Now convert them to float forms for use in calculating fitness */

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-37-

"perm" and "extra" values into the array (use the functions putpermfields
and putextrafields to do that).

fctrnbym: prints a set of factors (NOT necessarily prime) of the number
combinations(n,m). Needed in "mixtutor" program, to assist user in
picking appropriate subranges for his position subindices, if they are to
be used.

countextravalues: returns long ints, depending on flag, which tell the number
of values in fields which can be encoded in "mixed-type" chromosomes:

 flag == 1: number of permutations of the "extra" fields, which
is numextrafields!. Tells number of values available for
use by longtofloat() or longtointfields() or for dividing into
subfields by permuttosubindices() when only
permutation numbering is used (maximum index is one less).

 flag == 2: number of possible arrangements of "extra" fields
on a "mixed-type" chromosome (IGNORING THEIR VALUES), which
is C(numfields, numextrafields), the number of
combinations of numfields objects taken numextrafields at a time. Tells
number of values for use by longtofloat() or longtointfields() (for
example) when only position numbering is used (max index is one less, of
coures).

 flag == 3: the product of the two values above, which is the
number of values available for use by longtointfields
when BOTH (unsubfielded) permutation numbering and
position numbering are used to encode the long int value.

combineindices: simple offet combination of two index fields, such that
resultindex = majorindex * cardinality(minorindex) + minorindex.

The functions listed above are found in one of two files: utility.c or mixe-
drep.c. Examples of their use are found in the app(xxxxxx).c files and in the
program mixtutor, which you should run if you will be solving a mixed-type
problem without using appautmx.c and automix.c.

 Sample Code to Use a Mixed-Type Encoding --
 FOR NON-AUTOMIX APPLICATIONS, ONLY

The principal need for these tools in the objective function is usually to pro-
vide a means to supply the order-based fields of the chromosome for use in the
fitness function, and to translate the "extra" fields into the ordinary param-
eters which are then evaluated together with the order-based fields in the fit-
ness function. Two cases are illustrated below:
 1) An ultra-simple recoding of Goldberg's problem one (as solved for
 x^30 in file app1.c), taken from file app1perm.c.
 2) A more complex example (apprally.c), illustrating use of permutation sub-
fields together with position subindices to encode several parameters.

1) The "core" of app1perm.c's objective function is only 4 statements:

Erik D. Goodman, Michigan State University

-36-

getpositionsofextras: puts 1's in an array in the positions occupied by the
"extra" fields in a mixed-type problem.

longtointranges: is used to "decode" a long int (e.g., a single permutation
index or a single position index) into a set of smaller-range long ints,
using specified range limits for each subfield. NOTE: all ranges (i.e.,
upper limits) MUST be divisors of maxvalue, the maximum value of the long
field from which they are to be decoded, and their product must be
maxvalue.

intrangestolong: is used to assemble a long (for use as a permutation index or
position index) from a given set of smaller long int fields. Similar
condition on product of subfield ranges: product must be maxvalue.

arraytopositionindex: uses array of permuted values to generate an index which
is characteristic of the positions of the "extra" fields among the total
set of fields in the array. This is actually a scheme for encoding
combinations of numfields objects taken numextrafields at a time. Returns
a long int; if this would overflow, you may instead use
getpositionsubindices to get a SET of indices which can encode arbitrarily
many combinations of fields.

positionindextoarray: PARTIAL-DOMAIN inverse to arraytopositionindex. Takes a
(long) position index as a specification of where to place 0's and 1's in
an array passed to it. Returns a 1 if successful, 0 otherwise. CAUTION:
may only be used with position codes less than about 65000, because larger
codes may overflow intermediate calculations. THIS SHOULD NOT LIMIT YOUR
CAPABILITIES IN ANY WAY, because this is only an "inverse" routine, used
for encoding chromosomes, not decoding them, and if you NEED MORE RANGE,
you can get it by using position SUBRANGES and calling function
posnsubindicestoarray.

longtofloat: given a long argument, and its range, transforms it linearly into
a float in the range of given arguments [lower, upper]. Useful for
decoding "multiparameter, mapped, fixed-point"-coded chromosomes
(Goldberg).

floattolong: given a float argument, and its range [lower, upper], transforms
it linearly into a long int in range [0, maxvalue], where maxvalue is a
given long argument. Useful for generating "multiparameter, mapped,
fixed-point" codings for chromosomes (Goldberg).getpositionsubindices:
given an array of field values ("perm" and "extra" values), and
information about the subrange size for each subindex, calculates the
position subindices. Uses the BIGNUM representation internally, so can
handle arbitrary number of fields without overflow problems. Subindices
returned in an array are SHORT ints. If you want bigger numbers, use
combineindices to combine them. For help with laying out "legal"
subranges, run the program "mixtutor" which is supplied with this package.

posnsubindicestoarray: ALMOST inverse function of getpositionsubindices. Takes
a set of position subindices and the definition of their ranges and fills
an array with 0's and 1's in the positions which corresond to "perm" fields
and "extra" fields, respectively. Does NOT load the actual permuted

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-35-

inverseindexamong: inverse of function described above; used to go from a
permutation index back to the permuted array it represents.

safefactorial: factorial of numbers up to 12 (max before long int overflows);
checks arguments, calls smallfactorial. Returns code 1 if successful, 0
otherwise. Factorial value returned in second parameter. Prints a
warning message, also, if arguments out of range.

smallfactorial: table lookup; returns (long) j!, 0 <= j <= 12.

combinations: returns (long) combinations (n,m); i.e., number of combinations
of n things taken m at a time. Returns 0 if answer would overflow a long
int. Uses prime factorization of denominator and division of the factors
of the numerator to guarantee that no overflow occurs unless answer is
just too big.

primefactorsofnfactorial: places the prime factors of (argument n)! into a
data structure "prime". As supplied, n must be <= 100, but adding more
primes to structure remedies that if needed.

printprimefactorsofnbym: prints the prime factors of the number
combinations(n,m).

returnprimefactorsofnbym: returns the prime factors of the number
combinations(n,m) in a data structure.

permsubfieldmax: returns (long)maximum value which can be stored in a
permutation subfield (needed for scaling of floats, etc.).

putfield: puts a single int field into a reordering-type chromosome.

getfield: fetches a single int field from a reordering-type chromosome.

chromtointarray: fetches all fields of a reordering-type chromosome into a
given array.

intarraytochrom: puts the set of fields (numfields elements ranging from [0,
numfields - 1], in any order) from a given array into the chromosome
(reordering-type representation only).

getpermfields: fetches all of the fields actually representing the permutation
part of a mixed problem.

putpermfields: loads the values in array of "permutation" fields (cities in the
traveling salesman problem, for example) onto a chromosome, in the
positions marked by 0's in the position array also passed to it.

getextrafields: fetches all of the "extra" or non-permutation fields in a mixed
problem (for eventual decoding into the "permutation index" part of the
ordinary parameters).

putextrafields: takes array of "extra" fields and array with 1's in positions
where they should appear, and puts them on a chromosome.

Erik D. Goodman, Michigan State University

-34-

Because this mixed-type capability is new and conceptually unfamiliar, it is
introduced in some detail below.

For problems prepared using appautmx.c and automix.c, NONE of the routines
listed below need be used by the user directly. Only a handful of the follow-
ing routines is typically required for solution of a mixed-type problem using
the older, apphybxx.c, template. However, different encodings and therefore
different routines may be appropriate for different problems. Many routines
are included which go "backwards" from the usual procedure of taking a chromo-
some and decoding the parameter values which it represents for use by the fit-
ness function and output printing. However, they are included to help the
users who need to go both ways (e.g., to initialize chromosomes in particular
ways to specified index values, etc.) and to help users to test their encodings
in case problems are encountered. Each routine has at the top a description of
what it does and what its calling parameters are.

Briefly, the tools do the following (BUT SEE THE EXAMPLES BELOW FOR SAMPLES OF
THE SORT OF SIMPLE CALLS WHICH ARE USUALLY ADEQUATE FOR USE OF THIS CAPABIL-
ITY).

decodemixedchrom: EXCEPTION: located in the appautmx.c template file. Given
a chromosome, decodes the chromosome into two arrays, "permarray[]" and
"value[]", which are the chromosome’s ordering of the perm fields and
values for the value fields, for the user to use to calculate fitness.
For this to work, user must use the utility automix.c to define an input
file read by the appautmx.c application template.

whichpermut: returns the index of the permutation of the "extra" fields as they
appear in the array passed in. This function may be used ONLY if the
number of subfields is 12 or fewer, because it uses only a single long int
to return the index, and 13 or more fields causes overflow.

permutencode: returns the array passed in, but permuted into the order
specified by the long int index also passed in. Therefore, useful only
for problems where the number of "extra" fields is 12 or fewer.

permuttosubindices: returns the index of the permutation of the "extra" fields
subfields (or whole field, if numsubfields = 1) as they appear in the array
passed in. This index is one of the numerical values used to make int or
float fields or subfields for representing "ordinary" parameters.

nfactovermfact: returns long int value of n!/m!, or 0 and a printed warning if
that would overflow a long int (i.e., >31 bits).

indexamong: when called sequentially with an array which starts with the sorted
ints [0,1,...,n], and with a single element of the array, b, returns b's
position in the array EXCLUDING those positions already returned.
Destroys the array. (Used for calculating permutation indices.)

subindicestopermut: takes an array of permutation subindices (or a single
index, if numsubfields = 1) which characterize a permutation
(array), and generates the (permuted) set of "extra" fields it
represents, in an int array.

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-33-

30th power. It shows that, for the permutation indices, uniform order-based
crossover and pmx are vastly superior to cycle crossover and order crossover
for solving this "counting ones" problem. Note, however, that the "ones" being
counted are no longer on the chromosome, but in the "intermediate" representa-
tion: the permutation index.

App1posn.c uses only the position index, and thus can be used similarly to
explore the effects of the various operators on variables driven by the posi-
tion index.

App1both.c uses both permutation and position indices, and is very instructive
if used to explore the effects of various ways of combining the two indices to
derive a fitness (addition, multiplication, or either of two orders of calling
function combineindices are suggested for user exploration). The method used
interacts strongly with the genetic operators used and also with the form of
scaling or selection operators used.

The limitations of this approach, and the best ways to apply it to a given
problem, are among the subjects of current research of the author.

 INTRODUCTION TO THE USE OF THE MIXED-TYPE TOOLS:

AUTOMIX.C for Preparing Hybrid Representations with Template Appautmx.c

A new utility program, automix.c , allows the user to prepare a hybrid represen-
tation with a minimum of effort. The user need only specify how many variables
are to be permuted, how many real-valued variables are needed, what resolution
(i.e., how many discrete values) are needed for each real-valued variable, and
a fraction which determines a weighting of the permutaions index versus the
position index in determining the values of the real variables. This last
value, a fraction between 0.5 and 1.0, if set to a low value, tends to slow the
search, but make the chromosome longer; a higher value tends to make the search
proceed somewhat faster, but at the expense of a somewhat longer chromosome.
Applications set up using automix.c are prepared using the appautmx.c template
as a starting point. It reads the file written by automix.c, and also queries
the user regarding the desired ranges for the real-valued variables. (Of
course, if desired, the user may set those ranges by reading from a problem-
specific data file, etc.)

When the capabilities of automix.c are not sufficient, a standalone routine,
mixtutor.c, is provided to help the user understand and decide on the parame-
ters to use for the new mixed-type representation, and also to illustrate the
usage of many of the routines included in this release for solution of mixed-
type problems. It assists the user with appropriate sizing and scaling of
fields, to help to avoid overflow situations, etc., when running GALOPP's One-
pop or Manypops packages. The user can enter trial values for various parame-
ters, and learn how many codes are available, etc.

When the user will use an application based on the "apphybxx.c" template, the
program "mixsetup.c" is useful for defining the permutation subfields and posi-
tion subranges. It can write a file which can be read by apphybxx.c to trans-
fer this information.

Erik D. Goodman, Michigan State University

-32-

tation used in the sample input file appmansq.in, having 5 perm fields and 11
extra fields, for a total number of 16 fields. It will create 6 permutation
subfields and 5 position subranges, which are combined to generate 5 real
"speedup" variables, each of which has a fixed number of real values in a spec-
ified range. The 0th perm subfield is "thrown away" to allow rotational
invariance of the "extra" fields, so 6 are needed, rather than 5. The app-
mansq.c code assigns the first permutation subfield and first position subrange
to the first speedup variable, etc. The permutation subfield and position sub-
range are combined using function "combineindices," with the permutation sub-
field as the major (more dominant) index. Thus, for the example files
included, 5 perm fields and 11 extra fields were selected. That yielded car-
dinalities of perm subfields of 11, 10, 9, 56, 30, and 24 (remember, the 11 is
"thrown away"). The position subranges were assigned so that the largest car-
dinality subrange went with the smallest cardinality permutation subfield,
etc. -- i.e., 5 position subranges were created.

The inputs for automix are described at the top of the Onepop or Manypops input
files with which they are associated, in a block of comments.

Apprally.c
The remaining examples use the more complex template, apphybxx.c. The next
example application, a somewhat contrived one, is provided in the application
apprally.c . In this problem, one is trying find an optimal solution to an
(unusual) road rally problem, in which the parameters to be optimized are aver-
age speed to drive during daylight hours, engine size (horsepower, influencing
fuel consumption), duration of rest period, and time to start rest period, but
SUBJECT TO the path to be followed between the checkpoints, which the user may
select. The shortest path does NOT necessarily yield the most points. Points
are awarded for arrival at a specified elapsed time, using a specified amount
of fuel, resting for a long duration, and having a low specific fuel consump-
tion (in liters/100km). The GA actually solves this problem "blind," i.e., NOT
using information about the distance between each pair of cities, but only
about the total length of the tour after it is completed. SEE THE TOP OF FILE
apprally.c for a full explanation of the point system, etc. The code also
illustrates the use of many of the important functions provided in the mixe-
drep.c library and its associated routines.

Other Hybrid Examples to Explore/Illustrate Properties of
Representation:
Three additional application examples are provided, entitled app1perm.c
app1posn.c, and app1both.c, which illustrate the use of the order-based repre-
sentation to solve a non-order-based problem -- namely, Goldberg's first exam-
ple problem, which is solved in the usual way in file app1.c. It is
essentially a "counting ones" problem, since each additional 1 in the quantity
being raised to the power 30 causes an increase in fitness. It is a GA-easy
problem. However, in this representation, the relationship between the fields
on the chromosome and the final fitness is less direct. It is therefore
instructive to use the new indices and reordering-type operators in this prob-
lem, for example, to compare the performance of the 4 order-type crossover
operators included in this release.

File app1perm.c codes the problem in terms of the order-based tools, using only
the permutation index to map to the single parameter which is raised to the

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-31-

TANEOUSLY trading off other technology-related factors influencing the costs
or performance of various placements AS A FUNCTION OF THE QUALITY ACHIEVED FOR
THOSE PLACEMENTS.

Several example applications are provided:

Appmatch.c
The first example, appmatch.c , is the only one using the new, simpler template
(appautmx.c) and the automix.c tool for specifying the representation. It
defines a chromosome with numpermfields fields to be reordered, and with
numpermfields real values associated. The antifitness function to be minimized
(fitness is 1./ antifitness) is the sum of the differences between the ordered
values in permarray[i] and i and 10% of the difference between permarray[i] and
the real value in value[i]. In other words, the optimal solution would have
the form:
0, 1, 2, 3, 4, ... and associated real values 0.0, 1.0, 2.0, 3.0, 4.0
This problem may easily be modified by the user (on one line) to make problems
which are fairly easy or VERY hard, depending on whether the reals must come to
match fixed values, or must match "moving targets" in the permarray fields. It
is illustrative to play with this example, for various combinations of repre-
sentations (precision, etc.), operators, selection pressures, etc.

The inputs to be provided to the standalone program automix in order to
describe the representation used in the sample input files are described in
comments at the top of the input files, appmatch.in and appmatc8.in, for Onepop
and Manypops, respectively.

Appmansq.c:
The next example is of a manufacturing sequencing problem. In this problem,
the answer sought is the best ordering of manufacture of n jobs, where each job
can have its manufacturing time reduced by devoting more "effort" (at a higher
cost) to it. Thus, the answers desired are the best order (a permutation of
the jobs) and the best speedup for each job. The input parameters defining the
problem are the "normal" time for each job, its shortest time (with maximum
speedup), its cost per unit time of speedup, its time due for completion, and
the cost per unit time for completion after the time due. The objective func-
tion to be minimized is the sum of the speedup costs and the total tardiness
penalty, which is the sum of the time each job is late times its tardiness cost
per unit time. The fitness, which must be maximized, is defined as the recip-
rocal of the cost (i.e., 1/cost). An auxiliary program, makmanuf.c, or another
called makmanko.c, can provide a suitable set of input parameters in a file,
with the latter program making problems with known optimum solutions. Program
automix.c should be run to set appropriate perm subfields and position sub-
ranges.

The program automix.c, which writes a file which can be read by appmansq.c, is
used to define the way in which the speedup parameters are encoded on the chro-
mosome. In the example problem, which uses files appmansq.in, 5jobsko.par, and
5sub6prm.mix, there are 5 jobs to be sequenced, and therefore 5 speedup param-
eters, one per job. The automix program should be run and told there are 5
perm fields, 5 real variables, and the minimum number of distinct
values for each real variable is 10. The minimum fraction of the values to be
coded by the PERM index should be set to 0.8. This will create the represen-

Erik D. Goodman, Michigan State University

-30-

The GALOPP System also uses either of two forms for the POSITION index:
 2a) a (signed) long int variable to hold the position index, or
 2b) a set of unsigned short integer subranges of the position index,
 such that the product of the subrange cardinalities is the
 cardinality of the entire position index.

Method 2a) limits the position index, which the author believes is not readily
"decomposed" like the permutation index, to a maximum of about 31 bits. How-
ever, method 2b) removes this limitation, using multiword integer arithmetic,
extending the range of the position index to be able to encode several thousand
bits of information (and, if need be, easily modified by the user to encode an
arbitrary amount).

If the application is written starting from template appautmx.c, the user is
insulated from calling any of the routines (listed below) to gain access to the
permutation fields and real-valued variables. This is the preferred way of
using the hybrid representation, whenever it is adequate. To prepare the rep-
resentation, the user merely runs automix.c (compiled on Unix via "source auto-
mix.mak") and entering the number of reordering fields wanted, the number of
real variables wanted, the resolution for the real variables, and the fraction
of the real variable to be controlled by the permutation (as opposed to the
position) index of the hybrid representation (entering a number between 0.5 and
1.0, for example, 0.75 is a decent value for some applications).

If the application must be written based on template apphybxx.c (the older
form), the user must examine his/her data needs for non-permutation variables,
and then decide which routines to call, (1a, 1b, 2a, 2b routines, etc.) In
order to help the user in making the decisions about decomposition of the per-
mutation index and position index, two programs, called mixtutor.c and mix-
setup.c, are provided. When mixtutor.c is "made" (compiled together with files
mixedrep.c, bignum.c, bigcomb.c, and utility.c, with header file sga.h avail-
able in the same directory), mixtutor will tell you about limits and limita-
tions of both indices, and let you experiment with various subfield and
subrange definitions, checking the legality of your choices, etc. Mixsetup
provides similar assistance, but also writes a file of parameters which can be
read by applications based upon the template apphybxx.c. This file specifies
the definitions of the permutation subfields and position subranges, as well as
the number of extra fields, etc.

More about all of these indexing methods is provided in three appendices: PER-
MUTATION INDEXING, POSITION INDEXING and BIGNUM LIBRARY.

 Description of the Approach, and Examples Appmatch.c,
 Apprally.c, App1perm.c, App1posn.c, App1both.c, and
 Appmansq.c

There are, of course, many ways to transform the positions and orders of the
"extra" fields into "ordinary" parameters, and the tools provided include only
four (which may also be combined in various ways to yield many others). The
use of these methods allows one to solve in a single, unified search, problems
involving reordering AND setting of parameter values. For example, in VLSI
design, one might optimize placement or partitioning of components WHILE SIMUL-

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-29-

available on the web server at the MSU GARAGe as soon as it is
converted into a suitable format (postscript).

Detailed descriptions of the perm and position codes and the ranking algorithms
(both are original, and believed to be marginally superior to those in the
literature) are provided in the appendices of this User Guide, and an overview
is given below.

 Using the Mixed-Type or Hybrid Representation

While the theory behind the mixed representation of GALOPPS is not straightfor-
ward, using the representation is easy. Sample programs appmatch.c and app-
mansq.c provide easy examples of its use with the new automated mixed
representation setup utility, automix.c . In essence, the user’s chromosome,
with its numfields fields in a particular order, is translated into an array
permarray[] of numpermfields elements in the order specified on the chromosome,
and a set of values for the desired number of real-valued variables, in array
value[] . The user could create a new application beginning either from app-
match.c or from the "blank" template, appautmx.c .

The hybrid representation is NOT recommended, in its current form, for solving
problems in which the number of real values needed, or the precision to which
their values are needed, are high, relative to the number of fields for which
an optimal ordering is sought. The chief aim of the approach is to free the
researcher to add a few (epistatically involved) real-valued fields to large
reordering problems, and to continue to be able to switch easily among the var-
ious genetic operators for solving reordering problems (uniform order-based
crossover, partially matched crossover, order crossover, and cycle crossover
are provided with GALOPPS, as well as swap and random sublist scramble muta-
tion). If a problem has 50 or more fields to be ordered, and a handful of real
values whose optimal values depend on the ordering selected, and if high pre-
cision in the real variables is not needed, then this rep might provide accept-
able solutions. The author continues to examine alternative rankings, and
alternative mappings from the ranks to the set of real values, which may better
preserve the building blocks of the problem.

Several examples (see below) other than appmatch.c, developed before the auto-
mix tool was created, are much more difficult to understand, and may be of
interest only for someone who wants to explore the theory of the representa-
tion. Such persons are invited to contact the author for assistance.

 Coding/Decoding Methods for the Mixed-Type Representation

The GALOPP System provides two fundamentally different types of codes, permu-
tation codes and position (or combination) codes. The user may use only one of
these coding systems, or may use both simultaneously (they essentially divide
the information space provided by "extra" fields into two disjoint parts).

The GALOPP System uses either of two forms for the PERMUTATION codes (or per-
mutation index):
 1a) a (signed) long int variable to hold the permutation index, or
 1b) a set of long int variables containing a user-specified number of
 subindices which, together, index all permutations of "extra" fields.

Erik D. Goodman, Michigan State University

-28-

"extra" fields to the n already needed on the chromosome. The contents of the
n "city" fields are numbered from {0, n-1}, and the "extra" fields from {n,
n+m-1}. The number of extra fields added must be enough to enable using ordi-
nary reordering operators (Partially Matched Xover, Uniform Order-Based Cross-
over, Order-Based Crossover, Cycle Crossover, etc.) to "shuffle" all the fields
(n+m), and then:

1) Pull from the chromosome in their order of appearance all fields with num-
bers less than n, which ARE the CITY permutation represented on this chromo-
some.

2) Pull from the chromosome all fields in {n, ..., n+m-1}, in their order of
appearance, which yields a permutation of the set {n, ..., n+m-1}. The code
just subtracts n from each of these then, putting them back in {0, ..., m-1}.
A ranking algorithm (developed by the author) of that permutation yields A NUM-
BER in the range [0, m!-1], or, if preferred, a SET of numbers whose product of
ranges is m!, which can then be mapped to a set of real values in any of a num-
ber of ways (and how to best do it is a very open question).

3) Starting from an array of n+m-1 0's, put a one in any position occupied by
an EXTRA field on the chromosome. This amounts to a particular combination of
n+m things taken m (or n, of course) at a time. Note that this combination is
INDEPENDENT of the ORDER of the extra fields (2 above) and the "city" fields (1
above). Then use a combination ranking function (developed by the author) to
map this to a (typically) huge integer, using the extended-precision (multi-
word) "bignum" representation, if needed to avoid overflow.

Thus, the algorithm has translated the positions and order of the m extra
fields on any chromosome into a set of independent integer variables, whose
product set has cardinality m! * (n+m)!/(m!*n!) or (n+m)!/n! possible values.
These integers may be combined, if desired, in many different ways, or may be
used individually to code sets of reals, or one index may be discarded, etc.
The number of bits of information represented by these two values together,
however, approaches (sometimes quite closely) the total number of bits added to
the chromosome for the m "extra" fields.

Obvious troubles:
1) mapping these integers back to the real ranges needed is tricky, maybe trou-
blesome; and

2) after the fields are mapped to discretized real ranges, does a point muta-
tion (say a 2-field swap) or other operator wreak havoc on most of the real
values?:

1) The difficulty of defining a representation is largely alleviated
by use of a tool provided with the GALOPPS system: automix. It
allows the user to specify how many reals are needed, what precision
is required, and what type of indices (permutation only or a mixture
of permutation and position indices) should be used. It then
produces the input needed to specify the representation for
applications developed using the template appautmx.c.

2) The second issue is discussed in a paper on hybrid
representations which will be

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-27-

MIXED-TYPE ORDER-BASED (PERMUTATION) AND
VALUE-BASED (NON-PERMUTATION) PROBLEMS --
SIMULTANEOUS SOLUTION

(Including Many Routines Useful for Encoding, Decoding, etc.,
Ordinary Parameters into Permutation Fields, Breaking Fields Into
Subfields, etc.)

"Hybrid" problems, involving a simultaneous solution for an optimal ordering of
some objects or events, and for values for some ordinary variables, can be
addressed with the NEW experimental tools being developed for the GALOPP Sys-
tem. The initial set of tools included may be useful when the values which are
optimal for the variables are dependent in some way on the order of the objects
which are being permuted. The full set of order-based or permutation-type
operators, including uniform order-based crossover, cycle crossover, order
crossover, partially matched crossover, random sublist scramble mutation, and
swap mutation, is also available for use in solving these "mixed-type" or
"hybrid" problems. It is NOT necessary to develop SPECIAL OPERATORS which treat
various parts of the chromosome differently, for example. Tools are provided
to allow simultaneous solution for the optimal order of the fields actually
representing order-based information, AND for the optimal values of the non-
permutation "ordinary" variables. (Two example applications, apprally.c and
appmansq.c, illustrate this process.) To date, analysis of the "building
blocks" of this system is not completed, but it appears to work well at least
at relatively modest problem sizes for a class of problems (exploring this
domain for solving manufacturing scheduling/planning problems is a topic of our
current research in this area). As the work progresses, we will introduce bet-
ter and far easier to use tools exploiting this new representation and what we
have learned about it. The general approach is described below:

By adding a few "extra" fields to be permuted like the others in a permutation
problem, it is possible to search not only for the optimal ordering of the per-
mutation fields, but also for optimal values for some real-valued parameters.
For example, if one wants to find the optimal order for visiting 10 cities, one
can represent each city with 4 bits on a chromosome, for a total of 40 bits.
If one adds a few additional non-city fields (with codes from 10-15, for exam-
ple), then one can use the usual permutation-type genetic operators to find the
OPTIMAL rearrangement of the 16 fields. However, the POSITIONS of the SIX
EXTRA fields among the 16 total fields, and the ORDERING (PERMUTATION) of the
SIX EXTRA fields among themselves can also be translated into a set of "ordi-
nary" parameters. For this example of 6 extra 4-bit fields (chromosome length
64 instead of 40), one can easily, with the tools provided, "recapture" 720
permutation codes and 8,008 position codes, or 5,765,760 distinct codes, which
is about 22 of the 24 extra bits of information introduced. These 5 million
codes can be "cut up" into subranges for mapping to integer fields, which can,
in turn, using tools provided, easily be transformed into linear ranges of
fixed-point real numbers (which Goldberg calls a "multiparameter, mapped,
fixed-point" coding).

IN OTHER WORDS, here’s how it works (since it’s not very intuitive):
Given n cities to permute, and, say, 3 numerical variables for which values
must be found to a precision of, say, one part in 2**5, the idea is to add m

Erik D. Goodman, Michigan State University

-26-

TOOLS AND OPERATORS FOR SOLUTION OF ORDER-BASED
(OR PERMUTATION-TYPE) PROBLEMS, INCLUDING SIX
OPERATORS ADDED TO THE GALOPP SYSTEM

 (NOTE: See also "mixed-type" problems, below)

Genetic algorithms are frequently used to find solutions to problems which are
essentially problems of permuting (or reordering) a set of fields. Scheduling
of production facilities, solution of shortest path problems, partitioning and
placement for electronic circuits, etc., are common examples. Release 2.05
added facilities for solving such problems as part of the basic GALOPP System.
If the user specifies that the problem is a permutation-type problem, the user
must select appropriate operators in the makefile (Unix systems) or project
file (Borland C, etc.). For permutation-type problems, four different cross-
over operators are included: uniform order-based crossover (uobx.c), order
crossover (ox.c), cycle crossover (cx.c), and partially matched crossover
(pmx.c). The first of these is described in Davis, Handbook of Genetic Algo-
rithms, while the other three are described in the Goldberg book. A choice of
two mutation-type operators for permutation problems is also provided -- swap-
ping of two randomly selected fields (swap.c) or random sublist scramble muta-
tion (scramble.c), which is described in Davis, Handbook of Genetic Algorithms.
The user is referred to both Goldberg and Davis for discussions of the merits
of these various operators for various types of problems.

Two routines in utility.c, int2ithruj and ithruj2int, are the lowest-level rou-
tines used to encode and decode individual fixed-length integer fields to and
from specified bit ranges on the chromosome. Higher-level routines are also
available for simpler access, when the application permits (getfield and put-
field for individual fields, and chromtointarray and intarraytochrom for
unloading/loading the whole chromosome from an int array (numfields and field-
length are global variables used in these cases). A special routine, initper-
mpop(), in startup.c (single populations) or initsubp.c (multiple
subpopulations), performs random initialization of all fields so that each pos-
sible value appears on the chromosome exactly once.

An example file, appbtsp.c, implements a solution to the Blind Traveling Sales-
man Problem... that is, a TSP in which the solver does not know (or does not
make use of) the distances between individual city pairs, but only receives at
the end of the tour a measure of the total length. This routine illustrates
the use of the facilities provided for solving such problems, and should serve
as the basis for the user's development of his/her own file, starting from the
"generic" appxxxxx.c file.

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-25-

REPRESENTING NON-BINARY CHROMOSOMES
(ALPHABET SIZE > 2)

Releases 2.30 and later of GALOPPS support the use of non-binary alphabets to
represent solutions on the chromosome. That is, bits are grouped into fields
n-bits long, of which only some subset may be legal values for the field. For
example, if alpha_size (the cardinality of the alphabet) is set to 6, then each
field is 3 bits long, but the only legal bit combinations in each field are the
binary strings for 0 - 5 10. That is, 110 2 and 111 2 are NOT legal values in any

field. The user triggers the use of this type of representation by responding
NO to "permproblem?" and any integer > 2 for alpha_size. (Alpha_size = 2 pro-
vides the usual binary representation.)

Implementation of this feature involved initialization of the populations
(there is a new function called in initsubp.c and startup.c, and superuniform
initialization of these chromosomes is not allowed), and development of new
variations of the traditional crossover and mutation operators.

Crossover (oneptx.c, twoptx.c, and unifx.c) for this representation are all
performed only at the boundaries between fields. This prevents generation of
any illegal codes, and preserves the fields as the basic atoms of any building
blocks. Crossover probability continues to be a per-chromosome probability.

Mutation is done on a per-field basis (mutation rate is per-FIELD (or per
LOCUS, if you prefer), just as it is for a binary representation, where a bit
is a field). When a field is to be mutated, its value is changed at uniform
random to a different one of the legal values. It is forced NOT to remain the
same (just as in the binary case), but to remain legal. (Of course, more than
one mutation at a time on the same chromosome could conceivably return it to
its former value.)

A new example application file illustrating the use of a non-binary alphabet is
provided, app0to9.c . This application searches for the single best string of
length numfields, of the form:
 0,1,...,m-1,0,1,...,m-1, ... 0,1,...k,
where m is the user-specified alphabet size. There is no upper limit imposed
on either k or m, although it will likely not work with 2**m > MAX_UINT.

Erik D. Goodman, Michigan State University

-24-

locus, it assigns the first child the allele from parent one with probability
50%, making a new, independent decision for each locus. Child two always
receives its value for any locus from the parent NOT used in child one. While
uniform crossover often works promotes very rapid search on very simple "count-
ing ones" problems, for example, it renders the concept of linkage completely
inoperative, so should NOT be used in any system using an INVERSION operator to
evolve better linkages. (Such an inversion operator is expected to be avail-
able in the next release of GALOPPS.) Uniform crossover also is NOT recom-
mended by this author for problems in which a "natural" representation offers
the hope that linkage might help to preserve co-adapted sets of alleles which
are relatively close on the chromosome.

 CHECKPOINT AND RESTART CAPABILITY:

GALOPPS, in either single-population or multiple-population (parallel) modes,
features a checkpoint/restart facility, which allows the user to run for a
specified interval, after which GALOPPS saves its state in checkpoint files on
the disk, and exits. The user may then restart the program and specify a
restart from the saved checkpoint files. The user may examine the population,
and may change any parameters, including popsize. If popsize is increased, new
individuals to fill the empty slots are generated at random, as at initiation
of a run. If the user requests printing of the chromosome strings, it is also
done at initialization time.

Checkpointing and restarting are actually accomplished with a pair of files,
with suffixes .ckp and .ind, which contain header (program state) information
and the population (individuals), respectively. The files share a common pre-
fix, and are always written. If the user specifies no checkpoint filename,
they are written to sgackp.ckp and sgackp.ind. When the program is started,
the user is allowed to enter a restart file prefix, and if none is entered, the
program gets its input from the keyboard (or file) as before.

The user may use restart files as a means of seeding a population with the
results of an earlier run. If needed, the user could also create "simulated"
restart files by hand for reading in as initial populations. In all cases, if
popsize is larger than the number of individuals provided in a file, the pro-
gram uses random generation to fill empty population slots.

In multiple-population (parallel) mode, the checkpoint files are first written
to disk with the suffixes .neu (for header files which will become .ckp files)
and .new (for files of individuals, which will become .ind files). At the end
of each full cycle, GALOPPS renames each .new-suffixed file with a .ind suffix,
and each .neu-suffixed file with a .ckp suffix. This is done to allow OTHER
subpopulations to read individuals from neighboring subpopulations and to get
the SAME CYCLE's results, regardless of whether the subpopulation being read
from is processed BEFORE or AFTER the receiving subpopulation. (Of course,
when subpopulations are calculated by more than one PROCESS (on a Unix worksta-
tion) or by more than one PROCESSOR (networked PC, workstation, or whatever),
there is no longer any attempt to keep the subpopulations "in sync," but the
file renaming still operates, for the sake of any subpopulations handled by the
same PROCESS.

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-23-

them, rather than a dissimilar individual. That gives the DISSIMILAR individ-
uals (presumably fewer in number) a BETTER CHANCE to survive. Since FITNESS
REALLY MEANS INFLUENCE ON THE NEXT GENERATION (survival of self or producing
offspring similar to oneself), crowding produces a DENSITY-DEPENDENT FITNESS
FUNCTION, in effect. However, unlike the concept of "fitness sharing," it does
not require calculation of average Hamming distances among ALL members of a
population, for example.

Since crowding actually implicitly ALTERS THE TRUE FITNESS FUNCTION, the user
should expect that different settings for crossover rate, mutation rate, scal-
ing factor, etc., may be needed for effective search than if crowding is not
used.

 Incest Reduction -- A Form of Mating Restriction

When DeJong-style crowding is used (crowding_factor is set greater than 0), the
user is also asked whether or not to use incest reduction. If it is turned on,
then a mechanism (developed by Goodman) to reduce the fraction of crossovers
between very similar chromosomes is invoked. In this scheme, after the indi-
viduals are selected which will survive or produce offspring into the next gen-
eration, using whatever selection method the user has chosen, pairs for
crossover are picked by choosing the first parent at uniform random from the
list of survivors and breeders, then choosing (nominally 3) possible candidates
for the other parent, again at uniform random from the list of survivors and
breeders. Then the Hamming distance of each candidate from the first parent is
calculated, and the one with the greatest Hamming distance is picked for the
crossover. Only the two parents actually used are eliminated from the list of
eligible parents for the next crossover selection, or for survival (possibly
mutated) after crossover is completed. This scheme structures pairs for cross-
over so as to promote diversity, while preserving all members of the selection-
biased pool (or their offspring) into the next generation. It is expected to
be especially useful for problems in which good building blocks can exist rel-
atively independently of one another, allowing them to be combined with high
probability (the royal road function is such an example).

 Restructuring and Addition of More Crossover Operators

The crossover and mutation operators are in separate files, allowing the user
to select them independently at compilation time. As an alternative to single-
point crossover (the only crossover provided in the original SGA-C), two-point
crossover and uniform crossover have been added for manipulating binary repre-
sentations. These three operators are now in files oneptx.c, twoptx.c, and
unifx.c, respectively. The user must select one of these in the makefile (or
one of the others, for a permutation-type problem -- see below), and a mutation
operator (normally, bitmutat.c for non-permutation problems).

Two-point crossover treats the chromosome as a ring, and places genes from one
parent between two randomly selected points on the chromosome, with the remain-
der of genes coming from the other parent. Two-point crossover is considered
by many to be superior to one-point crossover for most applications, and its
use is recommended.

Uniform crossover treats each locus as independent of all others, so for each

Erik D. Goodman, Michigan State University

-22-

which are closer to the best individual. The user defines (via input) the cri-
terion for "good"... entering a multiple of the standard deviation. This mul-
tiple of the standard deviation is added to the mean to determine a lower
fitness limit for being considered "good." The number entered may be a posi-
tive or negative floating point number, and will typically be between +3. and -
3. For example, 1.0 will result in all individuals at least 1.0 standard devi-
ations above mean fitness to be in the "good" group. An entry of 0.0 means all
with higher than average fitness are "good." An entry of -3. means that essen-
tially EVERYONE is "good." A special entry, 7.0, is used to disable this con-
vergence calculation and reporting. Otherwise, it is calculated and reported
at the same intervals as the count of ones in each locus, another convergence-
related measure.

 DeJong-Style Crowding, to Foster Niche Formation

DeJong-style crowding, as described in Goldberg's book, has been added as a
means of allowing "niching" of the population -- that is, allowing several dis-
tinct groups of individuals (in different "niches") to develop and persist in
the population, with lessened pressure by the GA for all to converge toward a
single type of individual. This technique is intended to help reduce premature
convergence of the population, allowing it to more effectively explore the
domain of a multi-modal function. It may be particularly useful for very dif-
ficult functions, in which runs of many generations are expected to be neces-
sary to find a global optimum.

DeJong crowding uses an integer "crowding_factor" specified by the user. If
it is set to 0, crowding is turned off, and the crossover operation proceeds as
usual, with offspring replacing their parents. If crowding_factor is set to 1,
then each individual produced by crossoverreplaces a randomly selected indi-
vidual from the population ALREADY SELECTED according to relative fitness for
reproduction or survival into the next generation. If crowding_factor is set
greater than 1 (usually to 2, 3, or other small integer), crossover is modified
to work as follows:

Prior to any crossover or mutation, normal fitness-weighted
selection (with or without sigma truncation and linear scaling) is
used to select the tentative members of the next generation, newpop.
Crossover is then performed on pairs of individuals selected at
UNIFORM RANDOM from this set (since fitness has already been used
to bias the SELECTION FOR SURVIVAL). After a pair of individuals
is selected for crossover, the children are calculated as usual.
Then, for each child, "crowding_factor" members of the set of
tentative survivors are selected (at uniform random), and HAMMING
DISTANCE of each chromosome (i.e., number of DIFFERENT BITS) from
the child is calculated for the crowding_factor individuals. The
child then REPLACES whichever survivor it was CLOSEST TO in Hamming
distance. Mutation is then applied to all members of the new
population at the specified rate, and fitnesses are calculated for
new individuals.

The idea of crowding is that children will tend to replace individuals to which
they are SIMILAR, so that, as more individuals of a similar genotype arise in
the population, the chances increase that their offspring will replace one of

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-21-

ONE copy of the current generation's best fitness individual appears in the
next generation's population. If turned off, 1) for some selection methods
(but NOT for suselect.c), random chance may fail to allow the best individual
to be selected for crossover or reproduction; or 2) chance may cause all copies
of the current best individual to be subjected to crossover and/or mutation,
perhaps resulting in NO copies of it in the next generation, in spite of its
higher-than-average fitness. Thus, fitness of best individual of current pop-
ulation could actually decrease, if elitism is not employed. However, depend-
ing on the circumstances, some may wish to avoid it, to insure absolute
adherence to the sampling probabilities given by the fitness distribution, etc.

 Enriched Application-Dependent Callback Functions

In support of the many new functions added to SGA's original set, and in the
spirit of the design of the original, the application file templates,
appxxxxx.c, appautmx.c, and apphybxx.c, within which the user can develop the
code needed to solve a particular problem using GALOPPS, have been enriched and
extended. The user is given the opportunity to inject problem-specific code at
many points, without modifying the GALOPP System. Thus, most applications can
be coded simply by modifying the single file appxxxxx.c. "NOP" model functions
for all of the user callbacks have been precoded in appxxxxx.c (for "ordinary"
problems) and in appautmx.c and in apphybxx.c (for "hybrid" or mixed-type prob-
lems), and any which are not needed may simply be left "as is."

 Option to Count and Reduce Objective Function Calls

For greater efficiency of operation, generate.c was modified so that theobjec-
tive function can be called ONLY when a chromosome has been subjected to a
genetic operation. For time-varying or stochastic problems, or any others for
which the evaluation of a chromosome may vary each time it is evaluated, a flag
(stochastic) has been added to retain calling of the objective function for
every chromosome in every generation, at the user's option.

 Tools for Monitoring Convergence of Population(s)

Percentage of Ones at Each Locus:

A facility was added for calculating the proportion of 1 bits present in the
population at each locus. Using this measure, which can be calculated and
reported at a user-specified interval, it is easy to determine when most indi-
viduals have the same values for particular loci, and thus judge the degree of
convergence of the population, and determine hyperplanes in which it may be
difficult for the population to explore.

Measurement of Resemblance to Best Individual:

This convergence measure, developed by Erik Goodman, calculates a non-standard
measure of the diversity of the population as the GA progresses. It compares
the chromosomes of all individuals defined as "good" by the user against each
other and against the best individual of the current generation. It tabulates
the number of good individuals which are closer to the current best individual
than to any of the other good individuals, and then calculates the percentage

Erik D. Goodman, Michigan State University

-20-

dow scaling is off, the user may elect either sigma truncation or linear scal-
ing or both (sigma truncation followed by linear scaling of the result).

Window Scaling

Window scaling, similar to that provided in GeneSYS or GAucsd, is provided.
The user may elect no window scaling (-1), or may set scaling_window to any
integer from 0 to a #defined maximum (currently 19). The fitness is scaled by
subtracting from the raw fitness (init_fitness in the code) the LOWEST fitness
of any individual in the past scaling_window generations (0 means current gen-
eration only; 1 means current plus immediately preceding generation, etc.). Of
course, this window scaling differs from GENESIS in that GENESIS subtracts the
maximum fitness seen in scaling_window generations, because it uses "anti-fit-
ness", which it tries to minimize; in contrast, GALOPPS uses true fitness,
which it seeks to maximize. The user may turn window scaling on or off during
a run -- it keeps the needed minimum fitness history whether or not it is
active, and operates correctly from first activation, even when files are
restarted after a checkpoint halt.

Linear Scaling

Linear scaling is provided as described in Goldberg's book, using scalemult
(user input) as the ratio of best fitness to mean fitness. If maintaining the
user-specified ratio between best and mean fitness would cause some fitnesses
to become negative, the slope of the scaling line is readjusted so that the
worst fitness individual receives a scaled fitness of 0, while the mean fitness
is maintained. A value of -1 causes linear scaling NOT to be performed.

Sigma Truncation

Sigma truncation, as described in Goldberg's book, has been added. Thisallows
the user to specify a multiplier of sigma, the standard deviation, which the
sigma truncation feature in file statisti.c uses to alter the fitness function
as follows:

 The standard deviation, sigma, of the fitnesses of the current generation is
calculated. The fitness, f, is transformed to sigma-truncated fitness,
f', using:

 f' = max(0.0, f - (fbar - sigma_trunc * sigma)),

where fbar is the mean fitness of the current generation, and sigma_trunc is
the multiple of sigma specified by the user. That is, all of the transformed
values of f' below 0.0 are truncated to 0. The resulting values (in new-
pop[j].fitness) are then available for linear scaling, if desired. If the user
specifies sigma_trunc = 0.0, sigma truncation is turned off. NOTE: sigma
truncation does not preserve the mean fitness of the population.

 Optional Elitism

By setting or resetting a compile-time flag, elitism, in the user's
app(xxxxx).c problem definition file, the user may use or not use elitism. If
elitism is elected, the generation process is modified to INSURE that AT LEAST

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-19-

ADDITIONAL TOOLS FOR TRADITIONAL PROBLEMS

 Additional Selection Methods:

Stochastic Universal Sampling:

An additional form of selection, stochastic universal sampling (file suse-
lect.c) has been added, and is recommended over srselect.c and rselect.c. (See
Baker, Proc. 2nd Int'l Conf. on GA, pp. 14-21.) because of its small SPREAD
about the desired distribution and its freedom from bias. It is faster to com-
pute than all of the other methods, for a serial machine, but does not readily
lend itself to parallelization of the calculations for a single population, as
Stochastic Remainder Sampling, for example, does. GALOPPS continues to provide
rselect (roulette wheel), srselect (stochastic remainder sampling), and tse-
lect (tournament selection), as well as ranking (described below).

*** Linear Ranking, followed by SUS:

Whitley (ref.) describes and documents many benefits of using fitness ranking,
rather than relative fitnesses, as the basis for selection for survival and
mating. For problems in which control of the rate of convergence is at all
difficult, ranking is generally more tractable other methods. It is similar in
some ways to tournament selection, but has a much smaller spread, of course.
It is most useful when GA's in general are most useful: for multimodal prob-
lems of high dimensionality. Ranking can be used by compiling in file rnk-
slect.c as the selection routine.

Quiet Mode, for Reduced Output Under App(xxxxx).c Control

A new variable, "quiet", has been added to control output. A user might to do
very long runs and be interested only in the final result, or in output when a
specific events occur. To assist with controlling the amount of output,
"quiet" may be set to any integer 0 - 3, from program input or during the run
in response to testing in the user's appxxxxx.c code). If quiet == 0, all nor-
mal program output is presented to the screen or output file. Quiet == 1 elim-
inates most normal output (except attaining of new best individuals) after the
copyright notice is printed, and at each generation, whenever quiet is not 0,
the function app_quiet_report() is called. Here, the user may examine any glo-
bal variables, etc., reset quiet to another value, or print specific things.
Quiet == 2 suppresses all but end-of-cycle reporting, and quiet == 3 suppresses
all output except from app_quiet_report (the user may simply choose to leave
all output suppressed until the run terminates, and then use a restart of the
program from the checkpoint file to examine the results and/or continue the
run).

 Fitness Scaling Methods:

Three forms of scaling have been added: window scaling, sigma truncation, and
linear scaling. Selecting window scaling disallows the other two, but if win-

Erik D. Goodman, Michigan State University

-18-

Format For Master File" in this manual.
 9. Run the executable, which will be called Onepop or Manypops.
 10. Answer the questions as they appear on the screen. For details on the

meanings of parameters, consult this manual as needed. If you are not
restarting from a run already completed, you may leave restartfileprefix
blank (just "return"). If you want to preserve the checkpointfiles at the
end of the run, it is best to specify a prefix for their names
(checkptfileprefix, up to 8 characters for Onepop runs, up to 6 characters
for Manypops runs).

(If desired, you may read the input from a file and record the output to a
file, by specifying two file names on the line invoking the program. See the
section on "New Format for Input Files" for details on input, or simply record
the interactive process to guide you in generating an input file. If you use
the parameter names in the file, as recommended, then if the program finds
something other than what it expects, it will tell you what it found and what
it expected, making it easy to correct the file.)

Other System:

 3. See the section "Modules to Compile" for instructions on how to compile
the code to run your particular problem.
 4. If your compiler does not accept ANSI-style prototype declarations, you

must edit files "external.h" and "sga.h" and comment out the lines
"#define PROTOTYPES_ACCEPTED" and "#define SECONDARY_PROTOTYPES_ACCEPTED"
per the instructions at the top of external.h.

 5. Set any compiler options (FP coprocessor or not, which processor, etc.) to
fit your system.

 6. Compile the modules described in "Modules to Compile".
 7. If running Manypops, you should already have created a (or use an existing)

master file, with extension .mst. It will tell each subpopulation what
its neighbors are, and what to read from each at the beginning of each
cycle. Format of the master file is described in the section "General
Format For Master File" in this manual.

 8. Answer the questions as they appear on the screen. For details on the
meanings of parameters, consult this manual as needed. If you are not
restarting from a run already completed, you may leave restartfileprefix
blank (just "return"). If you want to preserve the checkpointfiles at the
end of the run, it is best to specify a prefix for their names
(checkptfileprefix, up to 8 characters for Onepop runs, up to 6 characters
for Manypops runs).

(If desired, you may read the input from a file and record the output to a
file, by specifying two file names on the line invoking the program (or supply-
ing two arguments under the RUN menu of the BC system). See the section on
"New Format for Input Files" for details on input, or simply record the inter-
active process to guide you in generating an input file. If you use the param-
eter names in the file, as recommended, then if the program finds something
other than what it expects, it will tell you what it found and what it
expected, making it easy to correct the file.)

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-17-

srselect.c, suselect.c, tselect.c, rnkslect.c) to the one desired, for
crossover method (oneptx.c, twoptx.c, unifx.c, uobx.c, ox.c, cx.c, pmx.c)
to one appropriate for the problem type, and for mutation method
(bitmutat.c, swap.c, scramble.c) to one appropriate for the problem type,
as desired.

 6. Use Build All or Make to compile the code.
 7. If running Manypops, you should already have created a (or use an existing)

master file, with extension .mst. It will tell each subpopulation what
its neighbors are, and what to read from each at the beginning of each
cycle. Format of the master file is described in the section "General
Format For Master File" in this manual.

 8. Exit Borland C++ (if desired) and run the executable, which will be called
the same as the project file name, except with extension .exe.

 9. Answer the questions as they appear on the screen. For details on the
meanings of parameters, consult this manual as needed. If you are not
restarting from a run already completed, you may leave restartfileprefix
blank (just "return"). If you want to preserve the checkpointfiles at the
end of the run, it is best to specify a prefix for their names
(checkptfileprefix, up to 8 characters for Onepop runs, up to 6 characters
for Manypops runs).

(If desired, you may read the input from a file and record the output to a file,
by specifying two file names on the line invoking the program (or supplying
two arguments under the RUN menu of the BC system). See the section on
"New Format for Input Files" for details on input, or simply record the
interactive process to guide you in generating an input file. If you use
the parameter names in the file, as recommended, then if the program finds
something other than what it expects, it will tell you what it found and
what it expected, making it easy to correct the file.)

Unix System:

 3. If your compiler does not accept ANSI-style prototype declarations, you
must edit files external.h and sga.h to comment out the lines "#define

PROTOTYPES_ACCEPTED" and/or "#define SECONDARY_PROTOTYPES_ACCEPTED" as
described in the header of external.h.

 4. Copy the appropriate file to filename "makefile" (file name to copy is
similar to sample problem file, but beginning with "mak" and ending in
".one" for Onepop and in ".man" for Manypops -- SEE APPENDIX FOUR to get
the exact name for the Onepop and Manypops makefiles for the selected
application.

 5. Edit the compiler options in the makefile for any desired optimization,
etc. (FP coprocessor or not, which processor, etc.) to fit your system.

 6. Edit the options indicated in the makefile for choice of selection method,
crossover type, and mutation type, to ones appropriate for the problem at
hand. Exit the makefile.

 7. Use make to compile the code. (An alternative to steps 4-7 is to simply
edit the make file to be used (which loses its original values) and use
make -f makfilename.one, for example) to generate the run image.)

 8. If running Manypops, you should already have created a (or use an existing)
master file, with extension .mst. It will tell each subpopulation what
its neighbors are, and what to read from each at the beginning of each
cycle. Format of the master file is described in the section "General

Erik D. Goodman, Michigan State University

-16-

MUST then UNLOCK the file by opening the z.... file and writing a 0 to it.

The .ind file must also be LOCKED before the .new file is RENAMED to .ind.

There is some complexity in the initial creation (or finding in existence)
of the companion lock files, but that is handled largely by trying to lock
the file, and if that fails initially, concluding that the companion z....
file does not exist, and creating it. Of course, later in the run, the
companion file MUST already exist, so a failure has a different
interpretation later in the run. In general, if a file cannot be locked
to read a migrant, the program inserts such a message in the output stream
(file, usually), and then ignores that migration. If the all_pops.stt
file can't be locked for updating, the user is warned (again, in the output
stream) that all subsequent global statistics are probably corrupted, but
the run continues. However, if the file to restore a subpopulation for
further execution cannot be locked, the process has little alternative but
to give up with an appropriate message, since it really can't go on without
initializing the subpopulation. Because of these differences in file
types and situations, the locking mechanism has a specifiable
"persistence" -- how many times it will try to lock the file before giving
up -- and this parameter is set to try to minimize failures due to
"coincidence" while avoiding lengthy delays to other processors if a
single process "dies."
For obvious reasons, the user should avoid specifying any file prefix
beginning with "z" to GALOPPS, since files starting with "z" cannot be
locked by GALOPPS.

HOW TO GET STARTED RUNNING GALOPPS
NOTE: When GALOPP is run using more than ONE process, then differences in tim-
ing of migrations, etc., from process to process, mean that choosing the same
SEED for the random number generator NO LONGER guarantees that the results will
be the same. This effect is even more obvious when multiple processors are
used on a single problem.

 0. (Read sections of the manual? for description of capabilities, etc., to see
what you might want to use? If unfamiliar with GA's, read Goldberg's book,
Chapters 1-4.)

 1. Copy all files distributed with the GALOPP System Release 2.35 from its
distribution medium into a directory called GALOPPS2.35.

 2. Select a sample problem (objective function definition, etc.) to run
(example problems all have file names which begin with "app" and end in
".c").

DOS System, Using Borland C++, Onepop or Manypops:

 3. Open the corresponding project file (similar name to sample problem, but
ending in .prj -- SEE APPENDIX FOUR to get the exact name for the Onepop
and Manypops project files for the selected application.)

 4. Set the compiler options (FP coprocessor or not, which processor, etc.) to
fit your system. Select the LARGE memory model. If your compiler DOES
NOT accept ANSI-type prototype declarations, edit the files sga.h and
external.h and comment out the lines "#define PROTOTYPES_ACCEPTED" and/or
"#define SECONDARY_PROTOTYPES_ACCEPTED" as described in external.h.

 5. Replace in the project file the file name for selection method (rselect.c,

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-15-

"internal" restorations of checkpointed subpopulations during a
run, AFTER THE INITIAL READING OF THE restartfileprefix files, are
performed using the checkptfileprefix file names. Of course, if the
user does not want to PRESERVE the restartfileprefix files for later
performing OTHER experiments, the user may specify
checkptfileprefix and restartfileprefix to be the SAME, and then the
restartfileprefix files will be overwritten during execution. If
the user leaves the restartfileprefix empty, the program expects to
start from interactive user input or the corresponding text input
file (specified on the command line after the program name). In
that case, if checkptfileprefix is blank, the default "sgackp" is
created automatically. On a restart, If the user leaves the
checkptfileprefix empty, the restartfileprefix is used as the
checkptfileprefix as well, overwriting the previously saved state.
If this is not desired, the user should specify different prefixes.

B) Manypops also writes a single file called "xxxxxx99.stt", where xxxxx is
the checkpointfileprefix specified by the user. It contains information
about ALL subpopulations in the master file, regardless of what process
or processor is doing their calculations. It is the place in which, at
the end of each cycle, each process(or) READS the current "all-
populations" state, increments the variables by the numbers IT calculated
during its just-completed cycle, and then WRITES BACK to all_pops.stt the
new "all-populations" state. Information contained in the .stt file
includes the raw totals needed to calculate on-line performance, off-line
performance, and total number of evaluations performed to date, as well
as the genotype of the BEST INDIVIDUAL found so far by ANY subpopulation
in any process(or).

File Locking in Manypops -- "z-Files"

Because Manypops may be run simultaneously as more than one process in a pro-
cessor, or more than one processor, all working on the same problem as defined
in the master file (xxxxxxxx.mst), it is possible for one process to be trying
to write a certain file while another is also trying to read or write it.
Manypops therefore implements a machine-independent form of FILE LOCKING to
prevent loss or corruption of data. Locking actually operates only when a pro-
cess is told that it is NOT running ALL of the subpopulations (numpops != fin-
ishpopnum - startpopnum + 1). If all are being run in one process, locking is
unnecessary, and is bypassed. Locking is used on the following file types:
.mst, .ind, .ckp, .stt. It is not needed for .new or .neu files. It works as
follows:

When a process wants to use file abcdef00.ind, for example, which another
might also be using, it first checks file zbcdef00.ind, a "companion"
file. If the z.... file contains 0, the file is "unlocked." If the file
contains another number, the process "backs off" a process-specific and
varying amount of time before attempting again to lock the file. When
trying to lock the file, the process opens it, reads it, and if it is 0,
rewinds it, writes the process's unique number to it (actually, the lowest
number subpopulation it "owns", plus one), then READS it back. It performs
the read several times (just "killing time"), and if, at the end, the
number it reads MATCHES the number it WROTE, it concludes that it has
"LOCKED" the file. It closes the z.... file, then opens the file
abcdef00.ind, does any reading or writing it likes, then closes it. It

Erik D. Goodman, Michigan State University

-14-

arbitrarily, so long as it does not conflict with any of the naming
conventions (suffixes) used by GALOPPS for other purposes, and so long as
the operating system will accept it.

 b) The checkpoint header file, which records the state of the Onepop program
when the specified number of generations have been computed. It has the
suffix ".ckp", and the rest of the name is specified by the user at run
time (or in the input file, if used, in the "checkptfileprefix" field,
maximum of 8 characters).

 c) The checkpoint individuals file, which records all individuals in the
population when it is checkpointed. It has the suffix ".ind", and the
rest of the name is specified by the user at run time (or in the input
file, if used, in the "checkptfileprefix" field). Thus, for example, the
user would end up with a pair of files called "c1p322.ckp" and
"c1p322.ind", if the checkptfileprefix "c1p322" was specified.

Manypops creates the files above, PLUS:
A) The multiple subpopulation module, Manypops (actually just the main

program in file mainmany.c), writes the three file types above, but
slightly differently, plus several more. Manypops allows migration of
individuals among subpopulations at the end of each "cycle", which is one
OR MORE generations of EACH subpopulation which a particular process is
responsible for calculating. Migrating "individuals" are read from the
".ind" files written by their neighbors as checkpoint files. However, in
order to provide a "fair" environment in which subpopulations numerically
higher than a given subpopulation are not "disadvantaged" vis-a-vis
subpopulations numerically lower (which would already have been calculated
for another cycle), all migrating individuals are taken from ".ind" files,
but NEW .ind files are not created until the END of the cycle for the
process which writes them. DURING the cycle, they are created with the
file suffix .new (for files of individuals) and .neu (for the "header"
files storing program state information). Then, at the end of a cycle,
the program renames ALL of the .new files it "owns" to .ind files, and all
the .neu files to .ckp files. (This is done with careful LOCKING of the
files, as explained below.)

Thus, for each subpopulation it is responsible for from the master
file, a Manypops process writes .new and .neu files during the
cycle, and renames them to .ind and .ckp, respectively, at the END
of the cycle. Note that cycles are COMPLETELY asynchronous among
multiple processes running on the same CPU (on a Unix system, for
example) and among VARIOUS CPU's (on a workstation or PC network,
for example).

The file name prefix for .new, .neu, .ind, and .ckp files for Manypop
runs must be no longer than 6 (SIX) characters, since Manypops adds
a 2-digit subpopulation number to this prefix in making the names
for the various checkpoint files.

NOTE: When a run is to be RESTARTED from a set of checkpoint files already
written, the file prefix for RESTARTING from is given as the
restartfileprefix in the input file (or in response to that question
if working interactively). THAT NAME will be used ONLY for
RESTARTING ONCE, and all checkpoint files WRITTEN by the new run
will be written to the checkptfileprefix file names. The many

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-13-

WorldWideWeb page of the Genetic Algorithms Research and Applications Group at
MSU (//isl.cps.msu.edu/GA/) for progress reporting on their availability, or
contact goodman@egr.msu.edu (in U.S.), uskov@aicad.isrir.msk.su (in former
Soviet Union), or (less reliable) gabuaa%bepc2@scc.slac.stanford.edu in China.
Availability is expected in the December/January timeframe.

A version of Manypops which will do faster (OS-specific) file locking will also
be available in late November, 1994. Please monitor the web page of the MSU
Genetic Algorithms Research and Applications Group (MSU GARAGe) for further
information.

 FILES USED IN GALOPPS

Files involved with the GALOPP System are described in six places:

1) Files CREATED by the GALOPP System during execution are described in THIS
section, below, and in detail in APPENDIX FIVE.

2) Files used for compiling a version of the GALOPP System are described in
the subsection entitled "Modules to Compile" in the "CODE DISTRIBUTION
FORMAT" section.

3) The format of the "master" file (suffix .mst) is described in the section
entitled, "General Format for Master File."

4) The formats for (optional) input files are described in the section
entitled, "New Format for Input Files."

5) All new example problems are described in the section entitled, "New
Example Problem Files." This includes a description of any auxiliary
programs provided to create test data or specifications for the
representation for use with the particular example problem.

6) A brief explanation of each file SUPPLIED with the GALOPP System is
provided as Appendix Four.

 Files Created by the GALOPP System During Execution

NOTE WELL: Since GALOPPS is intended to be portable, it restricts file names
specified by the user OR created by the system to 8 characters, plus a period,
plus a 3-letter suffix or extension, for DOS compatibility. Therefore, even
when running on a Unix or other system which permits long file names, LONG PRE-
FIXES cannot be specified for the intermediate files the program writes (see
restrictions below). The user is free, however, to specify on the command line
an output file name AS LONG as the system in use will accept, so that results
may be labeled conveniently on Unix systems, for example.

Onepop:
During execution, GALOPPS/Onepop creates only three files:
 a) The output file specified as the third element of the command invoking the

Onepop code (if one is given). This name may be selected by the user

Erik D. Goodman, Michigan State University

-12-

nearly identical mates, and helping to combine building blocks for better
global search.

 Optional "elitism".

 Several fitness scaling methods.

 *** Improved "Quiet" mode operation, for reduced output under app control.
User can set "quiet" input to 0 (full output), 1 (most output suppressed),
2 (only "milestone" outputs recorded), or 3 (no output except saving of
populations, statistics in checkpoint files).

 Many new sample applications.

 *** An improved format for input of problems from files. Release 2.0 and
beyond allowed for an optional keyword on each line in an input file,
allowing easy checking for correctness and automatic reporting of what
parameter the program expected and what it found. In Release 2.20, a SHORT
form is also added for input to Manypops runs, if the parameters for all
subpopulations to be calculated by one process (or processor) are to be
identical. In that case, the user specifies them for one population, and
those values are used for all subpopulations. Only one random number seed
is then used, and random numbers continue in the sequence determined by
that seed throughout all subpopulations handled by the process.

 A limited capability for "seeding" of populations (see
 checkpoint/restart).

and many other features. They are described below.

NOTE: for anyone interested in BIN-PACKING or related applications, we have
created a bin-packing application under GALOPPS, based on Emanuel Falkenauer’s
Grouping GA (GGA) representation. It is extremely fast and effective, solving
problems involving packing thousands of objects into hundreds of bins TO OPTI-
MALITY in a few minutes on a PC. However, it was heavily optimized (hash
tables, etc.) and written for "internal" consumption, so is not included in the
general distribution because it would be very difficult for us to "support"
right now. However, with that caveat, email the author after October 30, 1994,
if you would like to get access to a copy of it.

 A NOTE ON USER INTERFACES, ETC.:

The GALOPPS system is FILE-DRIVEN, for system independence, and does not
include a graphical user interface bundled with it (for window-based specifi-
cation of input and graphical display of output, for example). A number have
been written, but all are operating-system-specific. Thus, GALOPPS is the
ENGINE, which was designed to be easy to embed in a GUI. The GUI must simply
write the input files (which can be in a human-readable format for easy devel-
opment) and display the results from the output or checkpoint files, for exam-
ple. Hooks (via app callbacks) are provided for modifying a run in process,
etc. A number of GUI's are currently in development for GALOPPS 2.30 and
beyond -- including some based on Motif/Xwindows and others on Microsoft Win-
dows 3.1. If you want a copy of such a system-specific GUI, please consult the

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-11-

neighbors) for all subpopulations, then the user may now specify it only
for subpopulation 0, and the program will do corresponding migrations for
all other subpopulations.

 *** Performance measures: on-line, off-line, current best and best ever, all
measurable within a single subpopulation, within a single cycle on one
processor (or process, in a workstation), and lumped for all
subpopulations of a problem.

 *** Convergence measuring tools, including "lost" and "converged" loci and
"percent converged" for all loci, plus callback functions for terminating
a run or reinitializing all or part of a population or subpopulation based
on its performance or convergence measures.

 A non-standard measure of convergence based on percentage of "good" (above
some standard-deviation-based fitness cutoff) which are closer to some
other "good" individual than to the current optimum individual.

 Checkpoint and restart capability.

 *** Two additional selection methods: stochastic universal sampling,
suselect.c (see Baker, Proc. Second ICGA); and linear ranking (see
Whitley) followed by stochastic universal sampling of the resulting
probability distribution.

 *** Addition of many more genetic operators, including two-point crossover,
uniform crossover, uniform order-based crossover, cycle crossover, order
crossover, partially matched crossover (pmx), random sublist scramble
mutation, two-field swap mutation, and GGA crossover and mutation. The
non-permutation operators operate on binary or larger alphabets.

 *** Superuniform initialization (optional), which (for binary
representations, only) guarantees that a population initially contains ALL
of the possible combinations of length less than or equal log 2 (population

size).

 *** A richer callback structure for defining user applications without needing
to alter any of the routines of the GALOPPS system, in the same spirit as
the original SGA.

 An optional DeJong crowding-type replacement capability. Setting
crowding_factor input to:

 0 invokes "kid replaces parent" as in SGA;
 1 causes kids to replace population members selected at uniform random from

among those already selected according to fitness for reproduction and/or
survival into the next generation, and

 cf>1 causes kids to replace most similar (Hamming distance) of cf randomly
selected individuals from among those already selected according to
fitness for reproduction and/or survival into the next generation (DeJong
crowding).

 *** Optional Incest Reduction (only when also using DeJong-style crowding)
helps to pair for crossover chromosomes which differ significantly from
each other, preserving diversity, reducing "wasted" crossovers among

Erik D. Goodman, Michigan State University

-10-

 NEW AND ENHANCED CAPABILITIES OF GALOPPS 2.35 --
 IN BRIEF:
GALOPPS was initiated from the Simple Genetic Algorithm as described in Gold-
berg’s book, and inherits some of its characteristics -- for example, it is
generational (i.e., the next generation is calculated entirely from the current
generation without drawing individuals from newly generated offspring). How-
ever, in many other ways, it has been extended to allow CHOICES, some of which
differ from the single possibilities offered by the original SGA. The user
should be familiar with genetic algorithms before using GALOPPS (or any other
GA which offers many choices of parameters, methods, etc.), because the prob-
lem-solving ability of the GA often depends STRONGLY on appropriate selection
of, and harmonization among, the many possible representations, operators,
selection methods, parameter settings, etc. GALOPPS does not decide on appro-
priate parameter settings or operators for a particular configuration -- that
is up to the user.

Major ways in which the current system has been extended or improved from the
SGA as documented in Goldberg's book (and from the SGA-C v1.1 version) include:

(*** indicates a capability NEW in Release 2.20 - 2.35. Other items were new
in Releases 2.0, 2.01, or 2.05.)

 *** Representation of problems involving non-binary alphabets, using new
crossover and mutation operators restricted to generating only legal
values (mutation) and crossing over only at boundaries between fields, and
a new initialization routine to generate only legal values in such fields.

 Solution of order-based (permutation-type) and mixed (order-based AND non-
order-based) problems (see extensive description below).

 Capability for simulation (on one computer) of interacting, "island" parallel
subpopulations.

 *** Capability for running island parallel subpopulations on MULTIPLE
processors (workstations or PC's), with migration among the subpopulations
in the various processors, so long as processors can read/write from a
common file system.

 *** Capability for running island parallel subpopulations using MULTIPLE
processes on a single workstation, with migration among the subpopulations
controlled by the various processes.

 *** Complete rewrites of bit-by-bit mutation and of uniform random
initialization of binary chromosomes, reducing execution times of these
routines 10-30 fold, particularly when hardware floating point is not
available.

 ***Improved capability for user-supplied initialization of the population.

 *** New optional SHORT form of the "master" file, xxxxxxxx.mst, which
specifies for each subpopulation of a Manypops run which types of
individual are to migrate in from which other subpopulations. If this
migration pattern is to be the SAME (relative to the positions of

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-9-

Release 2.35 additions and alterations have been described in the previous sec-
tion.

If you have begun using any of the earlier releases, the author urges you to
convert to the latest release. Release 2.35 has been tested more thoroughly
than any of the previous releases, some of which were interim development
releases only. The capabilities of Release 2.35, and its level of system inde-
pendence and testing are much better than earlier releases.

Erik D. Goodman, Michigan State University

-8-

The Beijing 2.01 Release of ESGA/IPGA (February 16, 1994) corrected not only
the bugs discovered in the original SGA-C, but also several bugs in earlier
alpha test releases of the code from November, 1993 - January, 1994. It adds a
print of the random number seed to the program output, generalizes example
problem app1perm.c, and adds an additional example problem. Modules updated
include generate.c, report.c, tselect.c, mixedrep.c, master.c, utility.c,
startup.c, initsubp.c, random.c, app1perm.c, and sgafunc.h. The example make-
files for the mixed representation files were also modified. The new example
file added is called app1both.c.

Release 2.05 of ESGA/IPGA (subsequently renamed GALOPPS) corrected a very few
additional bugs, made the input file I/O code more portable, provided some
additional tools for working on hybrid problems (reordering/parameter value
problems), and added a new manufacturing sequencing example problem.

Besides additions, several output formats were changed in Release 2.05. Rou-
tines altered include: mainpga.c, mixtutor.c, statisti.c, and apprally.c.
Also, a new callback (app_new_global_best_report()) was added to every app-
type file and template. This is intended to make it easier for the user to
turn on "quiet" mode, particularly for parallel runs, and see output only when
new global best individuals are found, but to be able to print out whatever
information is desired (from the new callback) at that time, even if in quiet
mode.

Release 2.20 corrects a severe bug in the optional crowding mechanism which was
introduced earlier. Crowding had not been tested extensively, and did not work
properly before Release 2.20. All I/O file formats changed in 2.20, due to the
many additional features introduced.

Release 2.25 corrected a serious bug in migration among subpopulations.

Release 2.30 corrected a bug in uniform crossover, and introduced non-binary
fields (alpha_size > 2) for non-permutation problems.

Release 2.31 added a new app callback function, app_after_random_init(),
called from startup.c and initsubp.c, to enable users to "adjust" or redo the
initialization of the population for their particular application, if needed.
Dummy (empty) functions app_after_random_init() were added to every applica-
tion file. If the user had written any new application files, they required
MODIFICATION by adding this dummy routine (see any of the sample applications).

Release 2.32 included a rewriting of 3 application files: appautmx.c,
appmansq.c, and appmatch.c. Their input files have also been augmented to
include comments about how to run automix to create the files needed to run the
sample input files. The updating of the PostScript version of the guide was
completed, and an ASCII text version was dumped from it.

Release 2.32 also included corrections to the guides, slightly improved logic
for the "quiet" mode printing (at user request), and corrected comments and
better input files for 3 hybrid-type example files, app1perm.c, app1posn.c, and
app1both.c. Users preparing their own application files should not be affected
by any of these changes, except to see somewhat more output when quiet is set
to 1 or 2.

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-7-

collection of processors of different speeds may be used, with the
only effect being that the number of evaluations done to find each
emigrant will differ strongly among processors, unless the user
chooses to "balance" that by doing less frequent migration from
processors which run at slower speeds.

The file locking mechanism was described above in 2), and is most
important when multiple processors are utilized. Accounting (for
example, number of evaluations before a new "best" individual was
found, on-line performance, etc.) is also done as described in 2)
above.

Since the parallelism of GALOPPS is accomplished without the need
for direct inter-process communication, it is easy to run truly
parallel subpopulations even on a number of PC's linked by a typical
PC network (Novell net, LANtastic, Pathworks, etc.), or to run
simulated parallel subpopulations on a single machine. It is the
simplicity of this scheme which renders it so portable. This
portability was a key design goal, since this software was developed
to support U.S. collaboration with GA researchers in Russia and
China, where the typical hardware available is much more likely to
be individual or networked PC clones.

The GALOPPS code is so portable and system-independent that parallel
subpopulations for a given problem can be run on an arbitrary
mixture of PC's, workstations, or any other computer sharing a
common file system, so long as the word lengths match (this affects
the format of the files they read and write). Any differences in
machine speed may be taken into account by the user, if desired, by
assigning processors different numbers of subpopulations, or
different subpopulation sizes, or other such decisions, so as to
keep the evolution among the subpopulations "loosely" in
synchronization; however, the operation of the code does not require
that to any extent. The rationale for doing it is to keep from
"overwhelming" the search of slower processors by introducing to
them "advanced" individuals from a faster processor, thereby
"poisoning" their own search and likely leading to local premature
convergence. However, a rough balancing is certainly all that is
indicated, and that is rather easy to achieve.

 RELEASE HISTORY AND BUG FIXES -- ESGA/IPGA 2.0 --> GALOPPS 2.32

The Beijing 2.0 release of the ESGA/IPGA system, distributed on January 31,
1994, was prepared during October, 1993 - January, 1994, while the author was
conducting research and teaching a graduate-level course on genetic algorithms
during his sabbatical leave at Beijing University of Aeronautics and Astronau-
tics, Beijing, China. Students in the class used parts of this code for solu-
tion of problems, but no large-scale, comprehensive test program was
undertaken. Several bugs were found and repaired in the SGA-C code which
served as the starting point for this development (a "stuck at" fault in the
initialization of chromosomes, improper rate and counting of mutations, and
errors in ithruj2int for reading of integer fields from chromosomes were par-
ticularly significant errors).

Erik D. Goodman, Michigan State University

-6-

for simulating. Then these processes run in parallel (of course,
the OPERATING SYSTEM is now doing the "checkpointing" or context-
switching). The operation of the subpopulations is NO LONGER
SYNCHRONOUS among processes, but GALOPPS was designed with this
asynchrony in mind. Simultaneous access to the same file is
prevented by a simple File Locking protocol, which allows only ONE
process to write to (or even read, actually) a file at any time.
Attempts to lock files which are locked by another process result
in randomly delayed retries. In the event of many consecutive
failures, the process either continues (with a notation to that
effect) without performing that particular migration (in the event
of migration attempts), or fails, if it cannot continue without the
file (such as a restart file for one of its own subpopulations).
The aborting of one process typically results in "freezing" of the
emigrants it provides to its neighbors, but does not interrupt the
continued progress of the remaining processes.

Accounting (e.g., reporting the BEST individual found in ANY
subpopulation, or tracking the number of evaluations performed in
ALL subpopulations before a new "best" individual was found, or the
"on-line performance" across ALL subpopulations, etc.) is more
difficult in this asynchronous environment. GALOPPS does this by
maintaining a file, all_pops.stt, which is updated by ALL processors
and ALL processes which are running one problem (i.e., from one file
directory using one .mst file). At the start of each cycle, a
process reads the current "global" information from the all_pops.stt
file, and then uses those values for all reporting it does during
the CYCLE (which may be as short or as long as the user sets it to
be). Then, at the end of the cycle, it locks all_pops.stt, reads
the (probably new, updated by other processes or processors) values
from the file, updates its local copies, and writes the new "totals"
back to the all_pops.stt file, then unlocks it. Thus, WITHIN A
CYCLE, a process is ignorant of things which happened in OTHER
processes during its cycle, but "catches up" again at the end of the
cycle, and provides the information which all OTHER processes will
need to "catch up" with ITS work whenever THEY next complete a cycle.
This reporting is "asymptotically correct," and the only improvement
possible would be to do this updating "more often," but how often
it is done is under user control, so should not be an issue.

The user must start the process which simulates subpopulation 0
before any other processes to allow for proper zeroing (at beginning
of run) or loading (during a restart) of the cumulative statistics
file (which has suffix .stt).

3) "TRUE" parallel execution:
Several processors (computers) each run their own copy (or copies,
using mode 2) above, as well) of GALOPPS/Manypops, each simulating
as many subpopulations as desired. GALOPPS/Manypops allows
simulation of ANY number of subpopulations on ANY number of
processors (actually up to 99, with default file naming
conventions). Again, all cooperating processors must share a common
file directory. The MASTER file (suffix .mst) determines the
neighbors and migrations, which are conducted asynchronously. A

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-5-

 QUICK OVERVIEW OF 2.35'S
 ISLAND (COARSE-GRAIN) PARALLEL CAPABILITIES

GALOPPS provides hardware parallelism for genetic algorithm users, even for
users of networked PC's, and can also provide simulated parallelism on a single
processor. It is designed as an (either true or simulated) coarse-grain- (or
"island-") parallel Genetic Algorithm (GA). It consists of two main programs,
with executables called (by the Unix makefiles) Onepop (main program in file
mainone.c) and Manypops (main program in file mainmany.c), for simulating sin-
gle populations and multiple (parallel) subpopulations, respectively. (Note
that the executables are named according to the "project" name when Borland C++
is used, so the names Onepop and Manypops will be replaced by such names as
app1sga.exe, approyrp.exe, etc. All of the project names are listed in Appen-
dix Four.)

The Onepop and Manypops modules share ALL but the main program and initializa-
tion code file in common, including using a COMPLETELY identical "app".c file
defining the user's problem to be solved. In addition, Manypops also uses code
in file master.c and a MASTER data file (suffix .mst) to define the neighboring
subpopulations of each subpopulation, and how many individuals are to migrate
in from each neighbor each cycle, and whether these include the best individual
and/or some number of randomly selected individuals. Onepop is run ONLY when
one wants to use a SINGLE population for the problem. Manypops can be run in
many modes, all of which allow simulation of more than one subpopulation.

The ISLAND PARALLELISM of Manypops (in mainmany.c) is provided in THREE ways:
1) "Serial" simulated parallelism :

One can simulate any number of subpopulations using only a SINGLE
PC or workstation, using GALOPPS/Manypops. In this case, each
subpopulation is simulated, in turn, for some number of generations
called a CYCLE, and at the end of the cycle, that subpopulation is
CHECKPOINTED to two files, for later restart. Each population
receives one turn per cycle; at the beginning of each population's
turn, and according to the master table (originally from a specified
file with suffix .mst), it reads one or more individuals from each
of its declared neighboring subpopulations. The frequency of this
interchange is entirely under user control (determined by the number
of generations per cycle, independently settable for each
subpopulation). All other GA-related input parameters (population
size, crossover rate, etc.) can also be independent among the
various subpopulations -- only the compile-time options are
constrained to be the same (of course) in all subpopulations.

2) Multiple-process simulated parallelism :
On a single Unix workstation, or on any other system which allows
the user to run more than one copy of GALOPPS/Manypops at the same
time, with access to the same file directory, the user may run any
number of copies of GALOPPS at the same time, each as a separate
user process. All copies share the use of a single MASTER file
(suffix .mst), which tells all the processes what must be
communicated among the subpopulations, whether they are within a
process or in separate processes. Each process, in the input file
it reads, is told WHICH SUBPOPULATIONS (by number) IT is responsible

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-4-

the second and later subpopulations, which were not, in fact, used, is no
longer necessary. This reorganization allows a new, simpler description of the
input files (in intempla.one and intempla.man), but altered ALL sample input
files, the ".h" files, and all sample application files, as well as the con-
tents written to the checkpoint header file. Checkpoint header files written
by older versions of GALOPPS may not be read by release 2.35, as variables were
added to and eliminated from the file format. App files require alteration of
only the initialization portions (addition of a parameter to app_init(), and
adding of app_user_init_pop() and app_after_random_init(), if updating from a
release prior to 2.31).

User-Supplied Initialization of Populations and Post-Initialization "Cleanup"
Supported:

Four types of "standard" initialization of chromosomes are furnished with
GALOPPS (random values between 0 and alpha_size-1 in each field, random binary
(a special case of the preceding one), superuniform initialization of binary
chromosomes, and random permutations of n values among n fields). In order to
accommodate the needs of users of representations which need to impose addi-
tional constraints on initialization, two new callbacks have been added to the
app files: user_supplied_init_pop(starting_guy_index) (new in 2.35) and
app_after_random_init() (new in 2.31). The first is called INSTEAD of one of
the normal four random chromosome generators, if the user sets the flag
"user_supplied_initialization" to TRUE in app_init (the default is FALSE).
This then requires that the user fill oldpop[starting_guy_index] through old-
pop[popsize-1] with valid chromosomes, generated however the user desires. The
user may wish to do this "from scratch," or by copying one of the standard rou-
tines (from startup.c or initsubp.c) into user_supplied_init_pop() in
appxxxxx.c, then modifying it to the requirements of the user’s particular rep-
resentation. The second callback, app_after_random_init(), (introduced in
Release 2.31) is called after ANY (including user-supplied) random initializa-
tion of chromosomes has been performed, but before the statistics have been run
on the initial population. The user may perform any desired transformations,
replacements, etc., on the population, to complete the initialization.

Global Statistics Redone:

Since 2.20, the handling of the global statistics file, for parallel (Manypops)
runs, has been completely rewritten, so that runs may be restarted using dif-
ferent restartfilenames from the checkpointfilenames used for the first part of
the run. This enables conveniently restarting from a particular state, over
and over, with the global statistics tracked properly for each of the restart
runs (i.e., cumulative from the values at the end of phase one, ignoring sub-
sequent runs made and "rolled back" from there).

Non-Binary Fields Added to "Ordinary" (Non-Reordering) Representation:

An option has been added to work with non-binary alphabets (for example, 6 pos-
sible alleles at each locus). Initialization has been rewritten to generate
only legal values, and crossover and mutation operators (oneptx, twoptx, unifx,
and bitmutat) have been rewritten to perform only legal operations, at field
boundaries. Input files (if used) must now contain alpha_size (cardinality of
alphabet) and numfields, instead of lchrom (length of chromosome in bits) for
all non-permutation representations. (Permutation reps did not use lchrom.)

Erik D. Goodman, Michigan State University

-3-

Russian/American Joint Education/Research Consortium for Intelligent CAD/CAM/
CAE and Genetic Algorithms, including members at Moscow State Bauman Technolog-
ical University, Moscow Aviation Institute, Nizhny Novgorod State University,
Penza State University, the Institute of Computation of the Russian Academy of
Sciences, and Taganrog State University of Radioengineering, and (2) a consor-
tium of Chinese universities conducting joint research on genetic algorithms
with the author and his colleagues at Michigan State University, including the
Beijing University of Aeronautics and Astronautics, Tsinghua University, Zhe-
jiang University, the Academia Sinica (Chinese Academy of Sciences), and
Beijing Union University. The software is available to others upon request,
or via anonymous ftp from the archive server in the Genetic Algorithms Research
and Applications Group (GARAGe), Michigan State University. For more informa-
tion, contact the author by email: goodman@egr.msu.edu. The Case Center's
Sister Center in Moscow, the AI/CAD Laboratory of Moscow State Bauman Techno-
logical University, V. L. Uskov, Director, can also provide assistance to users
or other interested parties in Russia and the CIS.

 OVERVIEW OF RELEASE 2.35

For information on getting started running GALOPPS, see "How to Get Started
Running GALOPPS" on page 16.

 WHAT’S NEW FROM 2.20 to 2.35?

BUG FIXES:
GALOPPS2.30 included several bug fixes to the 2.20 release: If you are using
parallel subpopulations at all, you MUST go to 2.30, as the 2.20 version had a
serious bug in migration of individuals among subpopulations. Another bug was
found in uniform crossover; a bug in DeJong-style crowding was already fixed
in release 2.20.

GALOPPS2.31 differs from 2.30 only in that an additional user callback func-
tion, app_after_random_init() was added to each application file, called from
startup.c (Onepop) and initsubp.c (Manypops). The user who has already created
new application functions must simply add a blank (dummy) callback to their
app......c file, as illustrated in any of the app files accompanying 2.31.

GALOPPS2.32 differs from 2.31 only in the rewriting of files appmansq.c to use
automix, and of appmatch.c and appautmx.c to improve their understandability.
Their input files were also augmented with comments about the automix runs
which should precede them.

GALOPPS2.35 includes restructuring of I/O and additional capabilities, but no
bugs were reported or found between the release of 2.32 and 2.35.

NEW FEATURES:

Input Reorganized:

The sequence in which inputs are requested, by both Onepop and Manypops, has
been organized more rationally. Especially in Manypops, any inputs which can-
not differ among subpopulations are now requested only once, and used for all
subpopulations "owned" by the process. The entry of random number seeds for

 GALOPPS -- The Genetic ALgorithm Optimized for Portability and Parallelism System

-2-

ence, for advice and assistance with the packaging, benchmarking, profiling,
and other improvements made in Versions 2.05 and beyond. The author appreci-
ates the helpful suggestions made by members of Computer Science 941 (Genetic
Algorithms) in the fall semester, 1994. The author also thanks Prof. Rich
Enbody (Computer Science) and his class, who are doing PVM parallel implemen-
tations of GALOPPS and writing Unix-based graphical user interfaces for the
system in fall semester, 1994. Finally, the author is grateful to Brian Zulaw-
inski and Kevin Schaffer, who have been actively exploring and extending
GALOPPS in the areas of scheduling (and bin packing) and permutation indexing,
respectively.

HARDWARE / OPERATING SYSTEM REQUIREMENTS:
This software has been run on DOS-based, MS-Windows-based, Macintosh, and many
Unix-based systems. It has been tested on Sun, Hewlett Packard, and NeXT work-
stations, using a variety of compilers. On PC systems, it has been tested
using Borland C++ (Release 3.1) (but not making use of functionality beyond
standard 'C') and using Microsoft C. It has also been tested on Macintosh com-
puters, where it compiles and runs, but it has not been used extensively in
that environment. The 'C' code for all of these systems is identical, and
allows the user to select via one or two "#defines" whether or not ANSI-style
in-line prototype declarations are used, depending on the compiler to be used.
The user should specify the characteristics of the compiler and the hardware in
use via compilation options before compiling the code (for example, what pro-
cessor, whether or not a coprocessor is present, what memory model is to be
used, what optimization should be done, etc., are needed by Borland C++).

BACKGROUND INFORMATION:
This software was developed from the starting framework of the Simple Genetic
Algorithm (SGA) system described in David Goldberg's book, Genetic Algorithms
in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, Mass.,
USA, 1989. This was done in order that the beginner to genetic algorithms can
read Goldberg's superb description of the theory and organization of a genetic
algorithm, and understand the code in his book, as a stepping stone to under-
standing the more complex and powerful structure of the GALOPP System. The
code has been extended many fold from the original SGA-C, and many sections
have been rewritten for greater efficiency (speed), but the organization of the
core GA is parallel to that of the original SGA in many respects.

The best way to become familiar with genetic algorithms in general, and with
the SGA organization in particular, is to read Chapters 1-4 of Goldberg's book,
perhaps along with several chapters of Holland's pioneering work, Adaptation in
Natural and Artificial Systems (UM Press, 1975, or MIT Press, 1990). (Copies
of both of these books, and several other books and conference proceedings, as
well, are furnished to all universities joining the Russian/American Joint Edu-
cation/Research Consortium for Intelligent CAD/CAM/CAE and Genetic Algorithms
(the "ICAD/GA Consortium") and to the universities in China collaborating with
the Genetic Algorithms Research and Applications Group of Michigan State Uni-
versity). The prospective user might also want to consult the SGA-C documen-
tation included as Appendix Six of this document, in order to see what was done
in translating the system from Pascal to 'C'. All later enhancements and
extensions are those of the author, and are described below.

In addition to being available for anonymous ftp and worldwide web distribu-
tion, this release is being distributed to two groups of universities: (1) the

Erik D. Goodman, Michigan State University

-1-

 AN INTRODUCTION TO
 GALOPPS

 The "Genetic ALgorithm Optimized for Portability and Parallelism"
 System

 DISCLAIMER NOTICE:
Modifications, extensions, enhancements, reimplementations, etc., of all pre-
ceding code from which this system is derived are the sole responsibility of
Erik D. Goodman, Professor and Director, Case Center for Computer-Aided Engi-
neering and Manufacturing, and member of the Genetic Algorithms Research and
Applications Group, Michigan State University; and absolutely no claim is made
as to the correctness, fitness or merchantability of this code or the code on
which it is based, or the accuracy of the accompanying documentation, for any
purposes whatsoever. While the author will be pleased to receive information
regarding any bugs discovered, and may, at his option, choose to release
revised versions of the code repairing such bugs, no promise or warranty is
made that such bugs will be fixed. All use of this code and documentation is
at the sole risk of the user.

This code, like the original SGA-C, is distributed under the terms described in
the accompanying file "NOWARRAN", in accordance with the guidelines of the GNU
General Public License. That means that this code has absolutely NO WARRANTY
implied or given, and that the author assumes no liability for any damage
resulting from its use or misuse. The contents of the NOWARRAN files for both
GALOPPS and the original SGA-C code are also printed for your convenience on
the second page of this document.

ACKNOWLEDGMENTS:
The author wishes to acknowledge the contributions of Mr. Wang Gang, graduate
student, Beijing University of Aeronautics and Astronautics, to the writing of
the 'C' code for some of the modifications and extensions of this system, and
thanks him for help in debugging of some of the author's code, as well, through
Release 2.05 of the ESGA/IPGA system.

The author would like to thank Prof. John Holland for introducing him to the
concepts of genetic algorithms, in the Logic of Computers Group at the Univer-
sity of Michigan, 1968 - 1971, and for successfully introducing genetic algo-
rithms to the world.

The author is grateful to Beijing University of Aeronautics and Astronautics,
Beijing, China, and to Prof. Li Wei and other faculty members of the Department
of Computer Science for providing him an excellent environment and facilities
for use during his sabbatical leave, September, 1993 - February, 1994, during
which time he began the development of this system. Special thanks are due to
the author's colleague and friend, Prof. Pei Min, College of Automation Engi-
neering, Beijing Union University, for his great help in making the stay in
China both productive and enjoyable.

The author thanks the members of MSU's Genetic Algorithms Research and Appli-
cations Group (GARAGe), and especially Bill Punch, Asst. Prof, Computer Sci-

APPENDIX ONE -- COMBINATION INDEXING
A Method for Indexing and Calculating Indices of

Combinations(n,m)...................................... 64

APPENDIX TWO -- PERMUTATION INDEXING
Permutations and Permutation Indexing: Methods of

Encoding and Decoding.................................. 69

APPENDIX THREE -- INTRODUCTION TO THE BIGNUM LIBRARY FOR
EXTENDED-RANGE POSITIVE INTEGER ARITHMETIC................... 70

APPENDIX FOUR -- AUXILIARY FILES
 Listing of All Auxiliary Files Provided with the GALOPP
 System, Release 2.35, by the Problem Files They Accompany.. 74

APPENDIX FIVE -- CONTENTS OF THE FILE TYPES WRITTEN BY GALOPPS.. 80

APPENDIX SIX -- EXCERPTS FROM SGA-C V1.1 RELEASE DOCUMENT....... 87

vii

MIXED-TYPE ORDER-BASED (PERMUTATION) AND NON-ORDER-BASED
(NON-PERMUTATION) PROBLEMS --
SIMULTANEOUS SOLUTION.................................. 27

Using the Mixed-Type or Hybrid Representation................ 29
Coding/Decoding Methods for Mixed-Type Problems.............. 29
Description of the Approach and Examples Appmatch.c, Appmansq.c,

Apprally.c, App1perm.c, App1posn.c, and App1both.c..... 30
Introduction to the Use of the Mixed-Type Tools.............. 33
Sample Code to Use a Mixed-Type Encoding..................... 37

NEW FORMAT FOR INPUT FILES...................................... 39
Sample of Optional Input File Format..................... 39
Specifications for Input Files -- for Onepop and Manypops.... 40
Explanation of Input for a Manypops Run...................... 42

ISLAND PARALLELISM -- GALOPPS/MANYPOPS FOR SIMULATION OF
MULTIPLE SUBPOPULATIONS................................ 44

Principles of GALOPPS/Manypops............................... 44
General Format for Master File............................... 46

New Example Problem Files....................................... 46
Approyrd.c -- Holland's Royal Road Problem................... 47
App0to9.c -- A Non-Binary Alphabet Demonstration Problem..... 47
Appbtsp.c -- Blind Traveling Salesman Problem................ 47
Appmatch.c -- A Hybrid Representation Example Using Automix.. 48
Appmansq.c -- A Manufacturing Sequencing Problem............. 48
App1perm.c -- Goldberg's First Problem, but using

a Permutation Index Representation..................... 48
App1posn.c -- Goldberg's First Problem, but using

a Position of Extra Fields (Combinations)
Representation... 49

App1both.c -- Goldberg's First Problem, but using
Both Permutation and Position(Combination) Indices
Representation... 49

Apprally.c -- A Road Rally Optimization Problem.............. 50
Appxxxxx.c -- "Blank" Template for Development

of New GALOPPS Applications............................ 51
Appautmx.c -- "Blank" Template for New Hybrid Reps Using

the Automix Utility to Specify the Representation...... 51
Apphybxx.c -- "Blank" Template for Development of new

GALOPPS "Hybrid" or "Mixed" Applications............... 52

CONTENTS OF USER'S APPLICATION-SPECIFIC FILE (APPxxxxx.C)....... 52

CODE DISTRIBUTION FORMAT.. 59
How to Prepare the GALOPP System for Solving

YOUR Problem... 59
Compiling/Linking the System................................. 60
Modules to Compile... 61

UPDATES AND BUG REPORTING....................................... 63

 APPENDICES

vi

 TABLE OF CONTENTS
Topic Page

Copyright Page......................................Inside Front Cover
No Warranty Notice.. ii
TABLE OF CONTENTS... v

Disclaimer and Acknowledgements................................. 1
Hardware/Operating System Requirements.......................... 2
Background Information.. 2

OVERVIEW OF RELEASE 2.35.. 3
Bug Fixes and New Features Since 2.20........................ 3
Quick Overview of 2.35's Island (Coarse Grain)

Parallel Capabilities.....................................5
Release History and Bug Fixes, ESGA 2.0 - GALOPPS 2.35....... 7

NEW AND ENHANCED CAPABILITIES OF GALOPPS 2.35 -- IN BRIEF....... 10

A NOTE ON USER INTERFACES....................................... 12

FILES USED IN GALOPPS... 13
Files Created by the GALOPP System During Execution.......... 13
File Locking in Manypops -- "z-files"........................ 15

HOW TO GET STARTED RUNNING GALOPPS.............................. 16

ADDITIONAL TOOLS FOR TRADITIONAL PROBLEMS....................... 19
Additional Selection Methods................................. 19
Quiet Mode, for Reduced Output under App Control............. 19
Fitness Scaling Methods...................................... 19

Window Scaling... 20
Linear Scaling... 20
Sigma Truncation....................................... 20

Optional Elitism... 20
Enriched Application-Dependent Callback Functions............ 21
Option to Count and Reduce Objective Function Calls.......... 21
Tools for Monitoring Convergence of Populations.............. 21

Percentage of Ones at Each Locus....................... 21
Measurement of Resemblance to Best Individual.......... 21

DeJong-Style Crowding, To Foster Niche Formation............. 22
 Incest Reduction -- A Form of Mating Restriction......... 23

Restructuring and Addition of More Crossover Operators....... 23

CHECKPOINT AND RESTART CAPABILITY............................... 24

REPRESENTING NON-BINARY CHROMOSOMES (ALPHABET SIZE > 2)......... 25

TOOLS AND OPERATORS FOR SOLUTION OF ORDER-BASED
(PERMUTATION-TYPE) PROBLEMS, INCLUDING
SIX OPERATORS ADDED TO THE GALOPP SYSTEM............... 26

v

 (This Page Intentionally Left Blank.)

iv

 GALOPP SYSTEM NOTICE

 NO WARRANTY
BECAUSE THE GALOPP SYSTEM IS LICENSED FREE OF CHARGE, WE PROVIDE
ABSOLUTELY NO WARRANTY, TO THE EXTENT PERMITTED BY APPLICABLE STATE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING, THE AUTHORS OF THE GALOPP SYSTEM
PROVIDE THE GALOPP SYSTEM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
GALOPP SYSTEM PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL THE AUTHORS OF
THE GALOPP SYSTEM, AND/OR ANY OTHER PARTY WHO MAY MODIFY AND
REDISTRIBUTE THE GALOPP SYSTEM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY LOST PROFITS, LOST MONIES, OR OTHER
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH PROGRAMS NOT DISTRIBUTED BY
FREE SOFTWARE FOUNDATION, INC.) THE PROGRAM, EVEN IF YOU HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY
OTHER PARTY.

 SGA-C NOTICE
(Covering the software from which the ESGA/IPGA System, and
then eventually, the GALOPP System, was originally derived)

 NO WARRANTY

 BECAUSE SGA-C IS LICENSED FREE OF CHARGE, WE PROVIDE ABSOLUTELY
NO WARRANTY, TO THE EXTENT PERMITTED BY APPLICABLE STATE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING, THE AUTHORS OF SGA-C PROVIDE SGA-C "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE SGA-C
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL
THE AUTHORS OF SGA-C, AND/OR ANY OTHER PARTY WHO MAY
MODIFY AND REDISTRIBUTE SGA-C AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY LOST PROFITS, LOST MONIES, OR OTHER
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH PROGRAMS NOT DISTRIBUTED BY
FREE SOFTWARE FOUNDATION, INC.) THE PROGRAM, EVEN IF YOU HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY
OTHER PARTY.

iii

 HEREDITY

 GALOPPS is a distant descendant of:
 SGA-C, v1.1, modifications by Jeff Earickson, Boeing Company,
 which was based on SGA-C, by Robert E. Smith, Univ. of Alabama,
 which was based on SGA (in Pascal), (c) David E. Goldberg 1986,
 All Rights Reserved,
 as described in GOLDBERG, David E., Genetic Algorithms in
 Search, Optimization, and Machine Learning, Addison-Wesley,
 Reading, Massachusetts, USA, 1989.

 GALOPPS
The "Genetic ALgorithm Optimized for Portability and Parallelism" System
(C) Copyright, 1994, Erik D. Goodman
Michigan State Univesity
East Lansing, Michigan 48824 USA

 ESGA/IPGA SYSTEM (on which GALOPPS IS BASED)
The Extended SGA and Island Parallel Genetic Algorithm System
(C) Copyright, 1993, 1994 Erik D. Goodman
Michigan State University
East Lansing, Michigan 48824 USA

ii

 AN INTRODUCTION TO

 GALOPPS

 The "Genetic ALgorithm Optimized
 for
 Portability and Parallelism" System
 (c) Erik D. Goodman 1993, 1994, Michigan State University.

 RELEASE 2.35 (November 4, 1994)

 (Obsoleting GALOPPS Releases 2.05 - 2.32 and ESGA/IPGA Releases 1.0 - 2.05)

 Written by
 Erik D. Goodman, Professor
 MSU Genetic Algorithm Research and Applications Group (GARAGe)
 Intelligent Systems Laboratory, Dept. of Computer Science, and
 Case Center for Computer-Aided Engineering and Manufacturing

 Professor, EE, ME
 Director, MSU Manufacturing Research Consortium
 Director, Case Center for
 Computer-Aided Engineering and Manufacturing
 Michigan State University, East Lansing 48824

 TECHNICAL REPORT # 94-11-01

 INTELLIGENT SYSTEMS LABORATORY,
 DEPARTMENT OF COMPUTER SCIENCE
 AND
 CASE CENTER FOR COMPUTER-AIDED
 ENGINEERING AND MANUFACTURING

 MICHIGAN STATE UNIVERSITY, EAST LANSING

