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tation of the same problem. Such a combination appears to aid both in computational speed up,

increased quality of results, and the avoidance of local minima (maintenance of adequate diver-

sity).

7.4 Future Work

There are a number of areas we are currently exploring. The first is an extension of the simu-

lation model to a more accurate 3D model for dealing with plates and shells. The second is an

exploration of methods to extend the representation to include structural features like stiffeners

and more complicated geometries to increase the complexity of the designs and to more closely

model real design practice.
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view a GA as a good “flaw finder” or “model breaker.” Since a GA blindly (i.e., without preju-

dice) produces possible designs and feeds them to an evaluation function, it can often uncover

flaws in the evaluation function that had never occurred to the designer of the function. Further-

more, because it literally feeds millions of solutions to such a function, it tests many aspects of

such a function.

It turns out that the results we obtained, though meaningful from our GA testing point of view,

were not as accurate from a mechanical design point of view as would be liked. The GA uncov-

ered some shortcomings in the laminate analysis codefor the current application. We are address-

ing those concerns (by means of improved structural models) as our work continues.

7.2 Representation Issues

We have experimented with a number of different representations of 2D and 3D beams as

reported here, as well as quite a number of “bad” representations that, in the end, showed us the

representations that were most interesting. For the 2D results, it appeared that a 480-bit represen-

tation was most appropriate. It was detailed enough to insure good search without wasting com-

putation time. The 3D representation was more interesting, reducing the complexity of the

representation in a way that increased manufacturability, while at the same time including 3D

information on the cross-section of the beam. We have experimented with a number of encodings

of this information onto the chromosome, and the interleaved format as described in Section 4.4

was clearly superior. Again, this is due to the contiguity of information on the GA solution string.

All information concerning each layer was contiguous, giving the GA the opportunity not only to

find good solutions, but to keep them around while exploring configurations of other layers in the

design.

7.3 Parallelization of GAs

The parallelization is the work that has had the most impact on our research. Without it, we

would not have been able to explore the rich set of representations we did in a real-world domain.

Remember that our original 960-bit representation, summarized in Table 1, ran for more than 9

days without achieving the quality of results we did usingany of the parallel architectures and in

considerably less time. Our most promising results are those obtained with the island injection

architecture. The iiGAs combine island parallel search with search at multiple levels of represen-



18

Shown in the figure are the normal 2D beam design material configurations, as well as another

view showing the widths assigned to each layer. The dashed lines on the end view indicate what

the width of the beam would be if all the layers had the same width, i.e., the average width. The

experimental details of the run are shown in Table 4. An island parallel architecture was used in

solving the problem, with 10 nodes arranged in a ring exchanging the best solution every 20 gen-

erations.

The results indicated that the design was evolving with an “I-beam” cross-sectional configura-

tion, which is what would be expected as the optimal cross-section for these conditions. However,

it is interesting to observe that the design with the “better” I-beam cross-section found in the ear-

lier result (left side of Figure 7) is less fit than the later design, which appears to have deviated

further from a true I-beam configuration. However, the procedure had not yet converged, so this

situation might not have persisted had the run continued. Furthermore, additional study is

required to understand the complex relationship between the placement of compliant layers and

the cross-sectional shape as regards maximizing energy absorption.

7. Discussion

7.1 Accuracy of the Simulation Code

An interesting phenomenon that commonly occurs when using genetic algorithms, at least in

our experience, is the severe testing, and sometimes “breaking”, of complicated evaluation func-

tions. We originally began work with a laminated beam simulation code that had been tested and

appeared robust for a wide range of laminates [2,3]. However, a genetic algorithm design process

is a much more rigorous test of such a code than is typically obtained elsewhere. In fact, one can

Table 4: 3D Beam Results

Experiment
Number of

Nodes
Evaluations

per node
Machine

Type

Ring
Exchange

Rate

Max Strain
Energy

Figure 7,
left side

10 40,000 Sparc 10 every 20
generations

7.355e+03

Figure 7,
right side

10 120,000 Sparc 10 every 20
generations

1.034e+04
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There remained only the choice of how to configure the GA string to contain the 360 bits

required for each design solution. The most logical choice from a genetic algorithm point of view

was aninterleaved encoding which alternates an 11 bit code (1 for material, 10 for the compliant

layer element assignments to each element in the half layer) for the material layout of a layer with

a 4 bit code indicating the width of that layer, repeated for all 24 layers. In this way, all the infor-

mation necessary for encoding each layer is contiguous on the GA solution string. Such contigu-

ity is important in a GA encoding. If interdependent solution elements are not located “close-by”

on the string, then it makes genetic search difficult as cross-over can easily disrupt good solutions.

The chances are then greatly reduced that good solution pieces can co-evolve and remain part of

the “best” solution.

A single solution at each of two different stages of the design processing is shown in Figure 7.

Side View of the Beam

End View of the Beam

Key

Type 1 material

Type 2 material

Damaged Compliant Layer

Figure 7. Two 3D beam designs obtained at different stages of the design process.

Side View of the Beam:

End View of the Beam

Key

Type 1 material

Type 2 material

Damaged Compliant Layer
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that less labor is required to “layup” the laminate. One can therefore impose restrictions on the

GA model concerning the composition of the layers, requiring for example that each layer must

be composed of the same material. This has two benefits, namely making the resulting beam more

manufacturable and also reducing the complexity of the computational problem by reducing the

size of the search space. But, of course, such reduction also allows fewer potential beam struc-

tures to be considered, a disadvantage.

The representation used for our 3D beam designs is as shown in Figure 6. As before, we only

directly represented half of the beam in the GA, creating the rest of the beam by mirroring that

represented half across the vertical midline. We allowed only one type of material for the entire

layer of the composite, but still allowed each design element individually to have the possibility

of a compliant layer between it and the element below. Thus we increased the manufacturability

of the beam by having only one kind of material in the layer, but allowed for compliant layers to

be introduced between any two elements. The size of this part of the representation was therefore:

24 layers x (10 compliant elements per layer + 1 material per layer) = 264 bits.

We also added the 3D information not contained in the previous representations. To do so, we

made the following assumptions. First, we assumed that the material and compliant element

assignments made to the 2D design elements were uniform in the 3rd dimension of the design.

For example, if material 1 with a compliant layer was assigned to a design element, it was

assumed that the volume extension of that element in the 3rd dimension was uniform and con-

sisted of material 1 with a compliant layer. We further assumed that the extension of every design

element within a layer was the same. Thus, the width of each layer was uniform, and the only

extra information that was included in our representation was the width of each layer of the beam.

A constant volume constraint was imposed, with the average width of the layers denoted by the

dotted vertical lines in Figure 7. We arbitrarily chose the number of potential widths to be 16 (4

bits), making the size of this part of the representation:

4 bits x 24 layers = 96 bits.

The total representation size was then:

264 bits + 96 bits = 360 bits.



15

6. Three-Dimensional Beam Design and Manufacturability Constraints

Our final experiments concerned taking what we had learned from the 2D beam design exper-

iments and applying it to a more complicated 3D beam design problem. We also wanted to con-

sider manufacturability constraints as part of the optimization criteria.

Manufacturing is one of the major costs associated with using composite materials. The more

exotic the material and/or layer arrangements, the more expensive is the manufacturing process.

In a loose sense, the effect of design on manufacturing costs may be measured in terms of the

amount of similar, consecutive elements in each layer, since an increase in such similarity means

Table 3: iiGA Parallelism Results for 2D Beams

Block Size 1x1 1x2 2x2 4x2 4x4

Max Strain Energy
250,000 total evaluations1.340e+04 1.344e+04 9.550e+03 4.816e+03 8.794e+03

Max Strain Energy
400,000 total evaluations1.504e+04 1.225e+04

(lost this
node dur-
ing run)

9.637e+03 9.637e+03

Figure 6.
3D beam composition.

Beam Front Face,
Uniform Material
Layers

Extension of Design
Elements in the
Third Dimension
(Uniform within
Each Layer)

Long Axis of Beam
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their best individuals into the same or higher resolution nodes for “fine-grained” modification.

This allows search to occur in multiple encodings, each focusing on different areas of the search

space.

The main advantage an of iiGA is its search for “building blocks” in a high dimensionality

search space. Each “chunkier” representation represents a sampling of the full representation,

allowing faster search in the lower dimensionality space but perhaps discovering areas of interest

that can be more thoroughly explored at full dimensionality.

We have applied the iiGA approach to the composite material problem in the following way.

We created “chunkier” representations by representingmultiple design elements of the original

480 elements as a single GA entry. Thus we can speak of a 1x2 chunk, which represents two ele-

ments of a row of the design as a single GA element, or a 4x4 chunk which represent a 4-row, 4-

column set of elements as a single GA entry. The 1x1 chunks comprise the original 480-bit repre-

sentation, and it is into this representation that each of the other representations ultimately injects

its best solution.

Table 3 contains some typical results of applying iiGAs to the laminated composite beam

design problem. Five different representation schemes were created as 5 separate populations on 5

processors. Every 100 generations, the best string from the 1x2, 2x2, 2x4 and 4x4 representations

was converted to a 1x1 representation and injected into the 1x1 population for “fine tuning”. Note

again that the exchange of information was one-way, from each of the chunkier representations

into the original representation. The table reports thetotal number of evaluations for all 5 nodes,

as well as the best solution fitness for each representation. Two progress reports are given, one at

250,000 total evaluations and one at 400,000 total evaluations. It is interesting to note that in

400,000 evaluations, the iiGA achieved better results than the micro-grained approach of Table 2

obtained at 1.2 million evaluations, and was still making significant progress.

In Table 3, the result from the 1x2 resolution search appears to have worsened as the search

continued. This is explained as follows. When any one of the processors conducting a low resolu-

tion search converged, that processor was reinitialized and a new search was begun. After

400,000 total evaluations, the low resolution searches had all restarted at least once, so it is possi-

ble at any subsequent stage of the process that a poor “best” result will be predicted by one of

these nodes.
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5.2 Island Injection Parallelism

In our work with island parallelism, we experimented with a number of exchange topologies,

attempting to discover which topologies would be most appropriate, if not in general, then at least

for the laminated composite beam example. In so doing, we began work with a new topology we

call injection island parallelism or iiGAs. The two most interesting aspects of an iiGA are its

migration rules and the heterogenous nature of its nodes.

iiGA Heterogeneity

GA problems are typically encoded as ann-bit string which represents a complete solution to

the problem. However, for many problems, the resolution of that bit string can be allowed to vary.

That is, we can represent thosen bits inn’ bits, n’< n, by allowing one bit in then’-long represen-

tation to representr bits, r>1, of then-long bit representation. In such a translation, all r bits take

the same value as the one bit from then’-long representation and vice-versa. Thus then’-long rep-

resentation is an abstraction of then-long representation. More formally, let

wherep andq are integers, .

Oncep andq are determined, we can re-encode ablock of bitsp’ x q’ as 1 bit if and only if

,

wherel andm are integers, .

Such an encoding has the following basic properties,

(i) The smallest block size is 1x1. The search space is 2n.

(ii) The largest block size ispxq. The search space is 21=2.

(iii) The search space with a block sizep’xq’ is 2p/p’x 2q/q’.

An iiGA has multiple subpopulations that encode the same problem using different block sizes.

Each generates its own “best” individual separately.

iiGA migration rules.

An iiGA may have a number of different block sizes being used in its subpopulations. In gov-

erning interchange of individuals, we only allow a one-way exchange of information, with the

direction being from a low-resolution (larger chunks) to a high-resolution node. Solution

exchange from one node type to another requires translation to the appropriate block size, which

is done without loss of information from low to high resolution. One bit in ann’-long representa-

tion is translated intor bits with the same value in ann-long representation. Thus all nodes inject

n p q×=

p q, 1≥

p l p′×= q m q′×=

l m, 1≥
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example of the kinds of results we obtained. Again, all experiments used a 480-bit representation

(one half of the design represented directly, then mirrored across the vertical midline) with the

max strain energy beforeany element failed as the optimization criterion.

A few things to note. First, micro-grained parallelism, using a slower kind of machine

(TC2000 is a BBN shared memory machine using Motorola 96000 nodes) but 5 processors,

reached a comparable answer to that shown in Table 1, but using considerably less time. In exper-

iments we have conducted under more controlled conditions [24], we have found that micro-

grained parallelism gives essentially linear time speedup; that is, every node added to the system

contributes to a linear decrease in time required.

More important are the results of the island parallel work. In these experiments, we used 5

nodes arranged in a ring, each node working independently on a population of 200 (for a total of

1000, as in the micro-grained experiments). The best solution of each population was migrated to

its neighbor around the ring every 100 generations. Note that in a comparable number of evalua-

tions, the island parallel system found abetter solution. Not only does island parallelism get the

same linear time speed-up found in micro-grained parallelism, but also does a better job of search

due to the interaction synergism of the independent populations, locating better answers in the

same amount of time. Again, under more controlled experiments, we have found that island paral-

lelism shows (algorithmic)super linear speed up to comparable answers [24]; that is, as more

independent populations are added to the island parallel system, a more than linear decrease in

time needed to reach comparable answers is obtained.

Table 2: Results for 2D beams using parallel processing.

Parallelism
Type

Population
Size

Machine
Number of
Evaluations

Max
Strain Energy

Time

Micro-Grained,
5 Nodes

1 population
of 1000 TC2000 1,200,058 1.412e+04 1d 3hr 15m

Island Parallel,
5 Nodes (ring
exchange topol-
ogy, exchange
best every 100
generations)

5 populations
of 200 each

Sparc 10
1,180,448
(≈ 236,000
per node)

2.278e+04
(best of 5)

1d 2hr 12m
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The island-parallel environment has also been made “fault-tolerant”. Because we run our

experiments in a university laboratory environment, it is not unusual to have a processor fail (or

be rebooted) in the 2-3 day period we sometimes require for solution to a difficult problem. Our

environment handles such a failure by removing the lost node from the interchange topology and

continuing processing with the remaining functional nodes. The loss of the population might

adversely affect processing in the short term (both accuracy and time), but it does not stop the run,

and the process can typically recover from this. Furthermore, if other nodes are available, the

cached population can be migrated to a free processor and the population reintroduced into the

interchange topology. Our environment is capable of this as well, though it tends to be impractical

in the university lab setting where machines are nearly always busy. We can also run in a “polite”

mode in public laboratories, in which case our populations “go to sleep” whenever a user sits

down at a workstation, resuming automatically only after an idle period is detected. Again, the

temporary loss of a processor in this way slows the overall process somewhat, but the optimiza-

tion continues, nonetheless.

The effectiveness of these two parallel architectures is shown in Table 2, which is a typical

master node

101010
001011
110110
    ...

101010
001011
110110
    ...

101010
001011
110110
    ...

101010
001011
110110
    ...

check-
pointed
popula-
tions

unused
nodes

101010
001011
110110
    ...

101010
001011
110110
    ...

101010
001011
110110
    ...

Figure 5. Island parallelism.
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The other mode of operation, which is even more fruitful, maintains multiple, separate popu-

lations on each processor (see Figure 5). These separate populations explore their own areas of

the search space, but occasionally interchange their best (typically) solutions. The result of this

“island parallelism” is that the separate populations search different parts of the solution space

relatively independently; but, based on “suggestions” from other populations, begin to converge

and devote their efforts in parallel to promising areas. This approach does indeed decrease the

number of total evaluations needed to find optimal solutions, and is less likely to get stuck at a

local optimum than is a single population, given similar parameter settings.

   Setup Initial Population

       Crossover

   Mutate

Distribute Structures for Evaluation

 Do Selection on Structures

Yes

No

 Evaluate the Fitness of Structures

1 2 n

 Complete Trials

Master Node

Evaluation
Nodes

Figure 4. Micro-grain parallelism.
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bit representation of the beam, creating a search space of 2960. This design run required approxi-

mately 8x106 design evaluations. The result does not show midline symmetry, nor any other obvi-

ous form of symmetry or recognizable pattern. It was more computationally expensive than the

representations such as the first “shift” representation, but gave better results.

As a result of these experiments, the representation of choice used for the remainder of our

experiments was 480 bits long, representing half of the beam. The remainder of the beam design

was generated by mirroring the 480-bit solution across the vertical midline. The results we

obtained from this representation were always comparable to the few 960-bit experiments we per-

formed and much less expensive computationally than the full 960-bit representation.

5. Parallel Distributed Processing for GA’s and Design

5.1 Parallel GA Approaches

We have previously successfully applied GA’s to data mining applications [28]. As part of that

work we developed a parallel processing environment for Genetic Algorithms based on the p4

parallel processing tool [5]. The environment runs on both shared memory parallel processors and

on distributed networks of workstations. This environment runs in two modes. The first mode

assigns a processor to every solution in the population, termed “micro-grain” parallelism (see Fig-

ure 4). This processor is used to do the evaluation of the GA solution for the particular applica-

tion. Its major advantage is one of time. If a processor is available for every “solution” in the

current population, then the time to evaluate the fitness of the entire population is reduced to little

more than the time needed to evaluate a single solution (communication overhead is minuscule

relative to the processing time for evaluation of a single solution). This approach can be useful if

the evaluation function is very expensive computationally; however, unlike the techniques

described below, it does not decrease the total number of evaluations needed to find the best solu-

tion, and it does require essentially synchronous operation of the multiple processors
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The first design (Figure 3, left) used a simple representation of only 10 design elements (only

10 elements were actually represented in the GA solution string). These 10 elements were used to

“generate” a full design, which was then evaluated. The 10 design elements constituted the left

half of the first layer. The subsequent lower layers of the left half of the design were generated

using the 10-element layer above. Each layer (except for the first one, generated by the GA itself)

was generated by a “left shift” of one element of the layer above, resulting in 240 design elements

in the left half of the design. This half design was then “mirrored” across the vertical midline gen-

erating the remaining 240 elements of the design and forcing a midline symmetric design. This

solution space was quite small (approximately 106 designs), and therefore enumerable. We con-

firmed that the design found by the GA was indeed theoptimal design under the constraints of the

representation. Note that despite the availability of four materials, only two were used throughout

this design, making it much more manufacturable.

The second, less symmetric design (Figure 3, right), was the result of a run using the full 960-

960-Bit (run 2) Hp 735 1000 3,990,094 1.077e+04 ≈ 4 days

10-Bit Sparc 10 100 10,000 7.532e+03
(optimal)

≈ 10 min.

Table 1: Some 2D Beam Results

Experiment
Representation

Type

Machine
Type

Population
Size

Number of
Evaluations

Max
Strain
Energy

Time

Key

Type 1 material

Type 2 material

Damaged Compliant Layer

Key

Type 1 material

Type 2 material

Damaged Compliant Layer

Figure 3. Two examples of beam designs using different representations.
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ditions of continuous displacement and transverse shear stress at each layer interface as well as by

satisfying the shear traction conditions on the top and bottom faces of the laminate. The width and

thickness of each layer is arbitrary, so that beams of various cross-sectional shape may be analyzed.

The resulting model is accurate for thin and moderately thick laminates with material properties

that vary arbitrarily through the thickness, yet is efficient enough for optimal design calculations.

3.3 Implementation

For our GA experiments we used a modified version of GAucsd [30], a public domain C

implementation Genetic Algorithm tool. Our modifications were chiefly the addition of distrib-

uted parallel processing code from p4 [5], a tool for building parallel systems, that enabled us to

do GA’s over a network of Sun workstations. This code has been used in a number of other

domains by the MSU GA group [24, 28]. The laminate analysis code of Averill [3] was written in

Fortran and linked into the GAucsd code as the evaluation function.

4. Energy-Absorbing Beam Design

4.1 Simple 2D Beam results

Our first experiments focused on various ways to represent a composite structure in a GA

string and the effects of those representations. All of these experiments were done using a single

population.Two example designs, representing a range of complexity of GA representations, are

shown in Figure 3, along with the details of their runs in Table 1. In the table, “evaluations” repre-

sents the number of individual solution evaluations performed. Max Strain Energy is the measure

of energy absorption used (see Section 3.1), and is the optimization criterion.

Table 1: Some 2D Beam Results

Experiment
Representation

Type

Machine
Type

Population
Size

Number of
Evaluations

Max
Strain
Energy

Time

960-Bit (run 1) Hp 735 1000 7,910,349 1.891e+04 9d 9hr 1m
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The beam’s energy absorption capacity is determined by finding the maximum load the beam

can carry and the associated center deflection before failure occurs, as predicted by a maximum

stress failure criterion. More specifically, the center deflection and inplane normal stresses in each

design element are computed for an applied unit load. These quantities are then scaled linearly to

a level at which the inplane normal stress in one or more design elements is equal to the allowable

normal stress of the material in that element. The product of the applied load and center deflection

at failure, or the work done by the applied load, is then taken as a direct measure of the amount of

energy absorbed by the beam before failure.

3.2 Laminate Structural Analysis

In recent years, a great deal of research has been devoted to the development of laminate the-

ories that account for the most prominent geometric and structural features on a layerwise basis,

while minimizing the number of parameters (or degrees of freedom) required to describe the struc-

tural response (see, e.g. [2, 3, 11]). In the current study, the laminated beam model developed by

Averill and Yip [3] is employed to analyze each possible design. This model accurately accounts

for the layerwise variations of displacements and stresses in laminated composites by assuming a

piecewise continuous through-the-thickness distribution of the inplane displacement. The number

of degrees of freedom required to describe the laminate behavior is reduced by imposing the con-

Figure 2. Clamped-clamped laminated beam with center point load.

Point Load

Beam Deflection Under Load

Clamped Support

Thin Layers

Clamped Support
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The eventual goal of our research group is to develop tools for designing 3D large scale lami-

nated composite structures such as might be found in aerospace, automotive, civil, and marine

structures. In order to demonstrate and exercise the capabilities of our models, however, the initial

studies presented here focus on the design of laminated composite beams. In particular, the cur-

rent application is the design of laminated beams in order to maximize their energy-absorption

characteristics, such as might be required in armor plating for tanks or bumpers for automobiles.

A simplification is made in that only quasi-static loading is considered.

It is hypothesized that energy absorption can be increased by placing thin compliant layers be-

tween the fiber-reinforced composite layers (see Figure 2). The purpose of the thin compliant lay-

ers is to modify the load path characteristics of the structure for a given applied load to increase the

amount of energy the beam can absorb before failure. These compliant layers are a form of “dam-

age” between two layers, and they allow the adjacent layers to “slide” relative to one another under

a given load. This sliding mechanism may absorb energy but might also increase the local stresses

and reduce the strength of the beam. Thus, the role of the GA is to identify the stacking sequence

of the composite layers along with the locations and sizes of the thin compliant layers so as to max-

imize the amount of energy that can be absorbed before failure. The structural configurations under

consideration thus contain complex local material arrangements that significantly affect the local

stress/strain state as well as the global deflection response of the structures, both of which are used

to evaluate and rank each possible design.

In particular, a 24-layer beam made of graphite-epoxy composite layers is considered with

clamped-clamped end conditions and an applied point load at midspan (see Figure 2, where only

12 structural layers are shown). A thin layer (about 5.5% of the nominal ply thickness) is placed at

the top of each composite layer, so there are actually 48 layers in the model. Each thin layer may

be assigned the same material properties as the layer immediately below it, or it may be assumed

that the thin layer is compliant, with stiffness properties three orders of magnitude less than the

composite layers. The length-to-thickness ratio of the beam is 50. The length of the beam is divided

into 20 sublengths (finite elements), so there are 20x48 = 960 design elements. The GA must de-

cide whether to place a 0 degree ply (henceforth called material 1) or a 90 degree ply (henceforth

called material 2) in each of the 480 structural ply design elements, and whether or not to place a

compliant material in each of the 480 thin layer design elements. Note that this problem is of con-

siderably higher complexity than the other composite structure design work cited above.
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3. GA Design of Laminated Composite Structures
3.1 Background and Problem Statement

Multi-layer construction of panels offers many opportunities for analysts and designers to

optimize structures for a particular or even for multiple tasks, but this flexibility results in a very

large number of often discrete design variables (e.g., the thickness, material type, and orientation

of each layer, as well as the number of layers). In addition, the design space may contain many

local extrema, even singular extrema, and there may be many possible designs that meet or very

nearly meet the design criteria. Genetic Algorithms are well-suited for this type of design prob-

lem, and efforts to apply GA’s to laminated structures have been increasing rapidly over the past

five years.

There are a number of groups working on the application of Genetic Algorithms to the design

of composite structures. In particular, Haftka’s group at Virginia Polytechnic Institute and State

University have been actively pursuing GA applications to the design of laminated composite

panels [21,22]. They have examined GA’s using so called “memory”, essentially caching previous

designs and their evaluations to avoid the expense of re-evaluation [21]. Other active groups

include Hajela at Rensselaer Polytechnic [15,16] and Leung and Nevill [23].

Figure 1. The basic steps in a Genetic Algorithm.
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digm in many areas. It has been used in engineering applications such as clustering [12] and pipe-

line optimization [13]. In the context of design, GA’s have been used for: VLSI cell placement

[20], floor plan design [26], air-injected hydrocyclone [18], network design [10], and others.

The classes of problems encountered in design include many that are difficult to solve in prac-

tice -- i.e., NP-hard and some NP-complete problems. The computation of atruly optimal solution

to any design problem is usually possible only for a very limited domain. Some heuristic methods

must typically be applied to reduce the search space and generate sets of approximate (near-opti-

mal) solutions. In the genetic algorithm approach, each point in the search space is called a “chro-

mosome” or string [13], and represents a possible solution to the problem. A GA approach

requires a population of chromosomes (strings) representing a combination of features from the

set of features, and requires a cost function (called an evaluation or fitness function) F(n). This

function calculates the fitness of each chromosome. The algorithm manipulates a finite set (popu-

lation) of chromosomes, based loosely on the mechanism of natural evolution. In each generation,

chromosomes are subjected to certain operators, such as crossover, inversion, and mutation, anal-

ogous to processes which occur in natural reproduction. The crossover of two chromosomes pro-

duces a pair of offspring chromosomes which are syntheses or combinations of the traits of their

parents. Inversion in a chromosome produces a mirror-image reflection of a contiguous subset of

the features on the chromosome. A mutation on a chromosome produces a nearly identical chro-

mosome with only local alterations of some regions of the chromosome. A great deal of informa-

tion regarding these operators is available in the literature cited above, and it will not be presented

in detail here.

2.2 Operation of the GA

The optimization process is performed in cycles called generations.   Figure 1 gives an over-

view of a typical GA algorithm. During each generation, a set of new chromosomes is created

using the crossover, inversion, mutation, and crossmutation operators. Since the population size is

finite, only the best chromosomes are allowed to survive to the next cycle of reproduction. The

crossover rate often assumes quite high values (on the order of 80-85%), while the mutation rate

is small (typically 1-15%) for efficient search. The cycle repeats until the population “converges”;

that is, the diversity of the feature values among the population is very low and further explora-

tion seems pointless, or until the answer is “good enough.”
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Our approach is loosely based on a generate-and-test system, using the concepts of simulation

and optimization to control search. In our approach, a generation technique generates a set of

complete designs. These designs are then tested/evaluated based on a simulation of the design.

The optimizer feeds the simulator’s performance information back to the generator, and that feed-

back influences the generation of additional designs based on the existing designs and their per-

formances. This feedback controls how the space is searched, focusing on promising design

features and how they can be combined into an overall “good” design. We incorporate these tools

-- simulation and optimization -- as part of an overall generate-and-test strategy, in our use of

Genetic Algorithms (GAs) for design.

We will show the effectiveness of GAs for design problems using a real-world test domain,

the design of composite material beams, in particular beams that are optimized for energy absorp-

tion (Section 3). The paper will discuss the design of both two and three dimensional beams using

a GA (Sections 4 and 6). We will also show that parallel processing techniques make GAs effec-

tive for difficult, real-world design problems such as the composite-beam design problem. In par-

ticular we introduce a refined parallel-processing GA called the injection island GA (iiGA). iiGAs

use multiple representations of the same problem to explore different design spaces simulta-

neously, then combine the results of those good designs into an even better design (Section 5). We

will then discuss the significance of the work and our future plans (Section 7).

2. Design via Genetic Algorithms

2.1 Overview of Genetic Algorithms.

In 1975 Holland [17] described a methodology for studying natural adaptive systems and

designing artificial adaptive systems. It is now frequently used as an optimization method. The

biological basis for this adaptation process is Darwinian natural selection and Mendelian genetics,

that is elimination of weak elements by favoring retention of optimal and near-optimal individu-

als(“survival of the fittest”) and recombination of features of good individuals to perhaps make

better individuals. References [13,17] contain a theoretical analysis of a class of adaptive systems

in which the search space of the problem, in our case the space of structural modifications of com-

posite beams, is represented by sequences (strings) of symbols chosen from some alphabet (usu-

ally a binary alphabet). The searching of this representation space is performed using so-called

genetic algorithms. The genetic algorithm is now widely recognized as an effective search para-
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Abstract
This paper reviews an approach to design using Genetic Algorithms as applied to lami-
nated composite structures. We first discuss the concept of a Genetic Algorithm (GA) and
the role it can play in design, namely as an evolutionary search optimizer based onsimula-
tion results. We then discuss the composite structure design problem and how GA’s can be
used for design in this domain. Finally we discuss various experiments we have conducted
and our results in using GA’s for the design of energy absorbing composite material struc-
tures, including: 2D beam design, 3D beam design, use of distributed processing to
increase efficiency and accuracy of GA’s in design, and inclusion of manufacturability
constraints in automated design.

1. Introduction
Design is an open-ended problem-solving area, encompassing a wide range of problem-solv-

ing types and approaches. It is therefore difficult to reduce all descriptions of the various design

approaches to a common model, but Coyne et. al. [9], in describing design as a state space search

[27], make the following statement:

Problem solving implies search. What methods are available to control search? The two
most prominent computer-aided design techniques employed in producing “good” designs
are simulation and optimization.Simulation predicts the performance of a given potential
design, whileoptimization identifies potential designs for a given performance goal. (pg.
17)

Many design problem-solvers make use of both simulation and optimization to generate

designs. In fact, one way to view this coupling is under the general problem-solving technique

calledgenerate-and-test, which has been used in a number of design and design-like systems [4,

26]. The problem encountered in the use of generate-and-test systems is control of search. Blind

generate-and-test systems might enumeratively explore each possible design, an impossibility

given a design of any reasonable complexity. Thus control of search is paramount in such sys-

tems.
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