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ABSTRACT approach to optimizing feature extraction using a GA, our

. . improved approach using a genetic program (GP), and an ex-
We have previously shown how a genetic algo- ampje of the effectiveness of both the GA and the GP on an

rithm (GA) can be used to perform “data min-  important biochemistry problem, using the chemistry of pro-
ing,” the discovery of particular/important data  teins to predict their binding to other molecules.

within large datasets, by finding optimal data .

classifications using known examples. However, 2. The Basis for the Approach

these approaches, while successful, limited data 5 1 Feature Extraction

relationships to those that were “fixed” before
the GA run. We report here on an extension of

Our data mining approach is based on feature extraction as
described in classical pattern recognition literature. Broadly

our previous work, substituting a genetic pro-  speaking, there are two steps: identification of the features
gram (GP) for a GA. The GP could optimize and their form to be used in the recognition, thus defining the
data classification, as did the GA, but could also feature spaceand the formation of the classificationderci-

determine the functional relationships among sion rulesused to separate the pattern classes in the feature

the features. This gave improved performance
and new information on important relation-
ships among features. We discuss the overall ap-

space.
Definition of the feature space can be a difficult problem.

Too few features (or non-representative features) may not
provide enough information on which to base classification

proach, and compare the effectiveness of the while too many features make the search process intractable.
GA vs. GP on a biochemistry problem, the de- The rapid growth in the search space as additional features
termination of the involvement of bound water are added, which also increases the number of training sam-

molecules in protein interactions. ples required, is often referred to asc¢hese of dimensional-
ity.
1. Introduction Feature selectiomethods attempt to find the best subset of

sized of features of the origindl features. “Best” is typically
A rigorous definition of the terrdata miningis difficult, defined as that subset of cardinatityvhich gives the best

but it has come to mean a search through a large database classification (fewest misclassifications). Since an enumera-
“nuggets” of information that can be used for some particulative search of all sizd subsets is computationally infeasible

purpose. We have previously addressed data mining prol
lems using a genetic algorithm(GA). We view the problem of

(essentially%'c\i'% ), at least for any reasonably sixethere

data mining as a problem fefature extractionwhich we op-  are a number of heuristic approaches that have been used, in-

timize with a GA. Two results are generated: cluding sequential forward selection[Jain82], branch and
* a list of features which are important for distin- bound[Narendra77] and ~ GAs[Siedleckig9, Kellyol,
guishing the particular data from the background Punch93]. . i .
of the large database, and a (typically much larger) Feature extractiomethods define a transformation to the
list of features which aneotimportant for distin- feature space such that fewer features are required and the
guishing the data. features used give better separation of the pattern classes.

i ) L Thus feature extraction subsumes feature selection. Feature
» of those important features, a relative weighting in-  axtraction is the approach we will focus on here.

dicative of their importance for distinguishing the Formally (following the work of Devivier and Kit-

data. tler[Devivjer82]), we can define the set of features used in
The rest of this paper will review: feature extraction, ourclassification as a vectgrThe goal of feature extraction is to



define a new feature vectqr  that meets the criterion for im O =TypeX

proygd cIaSS|f|c§1t|on. We_ accomplish th|As transformation by O =TypeY

defining a mapping functiow/() such that§ = W(y)
The result of applyingV() is both to createy such that ® ;nTkynpoewn
91 < Iyl and to increase separation of pattern classes in tr

feature space as now definedjpy . Formally, we d#fife
by optimizing a criterion functiod(), ideally the probability O

of correct classification. Selection bf(y) is defined as the O O
optimal transformation among glossibletransformations Feature

W(y) such that: A o
J{W(y} = maxJ Wy)})

While W() could consist of any transform, in the classifica- @)
tion literature it typically is a linear mapping.

] ) 3 Nearest
2.2 Using a GA for Feature Extraction Neighbors Feature

The essence of our earlier approach to feature extraction B
twofold:

» Modify the original feature space based on a vector Figure 1 Anexample Knn classification. The un-

of weights generated by a genetic algorithm. known is classified as type X based on the majority
» Use a K-nearest-neighbor algorithm to evaluate the of its K (in this case three) nearest neighbors.
effectiveness of the weight vector in increasing
separation between known pattern classes. The Siedlecki-Sklansky chromosome is an example of a 0/
1 weighting of the importance of the features. That is, the fea-
ture space of the samples is uniformly modified by multiply-
ing each exemplar’s feature vecydry the GA weight vector
w (in this case 0 or 1) and this modified Knn rule is used to

we conduct, represented by thandy axes in the figure. classify the known samples via Knn. Thus the Siedlecki-

Known examples are then placed into this space as poinSkIanSky r?\p.)proalch is one of feature selection. .

based on theknownfeature values and labeled according to We modified this approach to perform feature extraction by
their known classification. An unknown can then be placed i@llowing the weights to be real values ranging over a broader
the same space based on its feature values, and it can be cS¢ale, such as 0 to 10. Features are prenormalized to the range
sified based on it§ nearest neighbors, whefds set to some [1,10], giving the weights an interpretation of the relatlye im-
integer value. Assum=3; then in Figure 1, the unknown Portance of_features to the classm_catlon task by scaling that
sample is labeled as typebased on the fact that 2 of its 3 feature’s axis. Our feature extraction searches for a relative
nearest neighbors are of tyfe weighting of features that giveptimalperformance on clas-

Our hybrid GA-Knn approach (see [Punch93] for more deSification of the known samples. Those weights that move to-
tails) was inspired by work first reported by Siedlecki andwardS 0 '”d'Ce!te '.[ha.‘t th_e|r correspondmg features are not
Sklansky [Siedlecki89] but modifies and extends their ap!MPortant for discrimination, and any weight that moves to-
proach in several ways. Siedlecki and Sklansky’s goal was Iv_vards the maximum mdpates that the classification is sensyl-
find “the smallest or least costly subset of features for whicllVe t©© small changes in that feature. Thus each feature's
the classifier's performance does not deteriorate below a cedimension is elongated or shortened according to its impor-
tain specified level’[Siedlecki89]. This was done by con-tance m_classmcatlon. Similar work was pursued by Kelly
structing a GA chromosome which consisted of a binan2nd Davis[Kelly91].
encoding whose length (in bits) equaled the number of fee GA-Knn feature extraction is therefore a scaling of the fea-
tures. If a bit equaled one, that feature was preserved in titure space such that an optimal class separation can be
feature space and used by the Knn to classify exemplars inachieved between the known classes. This weighting vector,
pattern classes. Each such string was penalized based ononce discovered, can then be used independently of the GA
performance (more penalty for worse performance in classto classify unknown samples and can also be used to indicate
fying the exemplars) and its length (more penalty for morewhich differences are important for class separation, provid-
1's in the chromosome). Their approach was as good as maing focal points for further research in the application area.
standard approaches, such as exhaustive search and bra
and bound, and much better on large feature sets (20 featui
or more) where the standard approaches showed poor col From the definitions shown in Section 2.1, we formally de-
putational performance. scribe the problem by defining the functioh'§) andJ().

A Knn is a simple rule for classification, and its general ap.
proach is shown in Figure 1. Each feature of the test set is
dimension in the classification search space. For simplicity”,
sake, let us assume that there are only two features in the ti

2.3 Formal Definition of Feature Extraction for GA-Knn



Table 1: Results of Training and Unbiased Testing of Waters Displacement using the GA-Knn

Training Set

Water Status

Total %

Conserved

(Predicted/Observed)

Displaced
(Predicted/Observed)

1700 waters (including 157 active site
waters used for testing), k=3, (biased tes

35/42, (83%)
)

86/115, (75%)

121/157, (77.1%)

1700 waters (with same 157 active waters)11/16, (69%)

39/51, (76%)

50/67, (74.6%)

k=3, (test 67 unknown active site waters)

» We definew to be the weight vector. It istax |y|

vector generated by the GA to be multiplied with
each exemplar’s feature vectgryielding a new

feature vector valuey . That M/(y)is the trans-

formation of all exemplar’y into g as in:
Oy{ S/i =Y Wi}
While |y| = |§{ ,any w[i] which is equal to

0 indicates that featureiyjfs effectivelynot used
in the classification.

* The criterion functiord() used is the performance
of the Knn in properly classifying exemplars into
pattern classes. The Knn is run on this new feature
space and misclassifications noted. Whgiving
the fewest misclassifications is considered the
“optimal” transformation.

2.4 Using the GA-Knn to Predict Protein Interactions

We tested the GA-Knn system on both artificially generat:
ed test data and on real-world application data. The approas
proved particularly effective on “noisy” data, that is data
where class exemplars had some random variance. We ha
applied itin areas such as: classification of soil samples bas:
on microbial populations [Punch93], classification of charac:
teristics of microbes with certain abilities (such as pesticide
degradation and organic chemical degradation)[Pei95], an
prediction of the role of water conservation or displacemen
in molecular binding [Raymer96].

The water displacement problem addresses predictin
whether two molecules “bind” together, such as the binding
of antibody to antigen or enzyme to substrate, and is a centr
problem of biochemistry with implications for understanding
biological processes at the cellular level. The molecule whicl
the protein binds is termed thgand (typically another pro-
tein, carbohydrate, lipid or drug molecule) while the site of
the ligand binding is called ttetive-siteof the protein. One
key consideration in such predictions is the role of water ir
protein-ligand binding. Water molecules (i.e., “waters”) are
observed in protein structures to be bound to the active site
the presence or absence of ligands [Kuhn92]. Various c
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Figure 2 Scaling of the knn feature axis. Scaling of
the x-axis (B value) changes the classification of the
water in question. The GA searches for scalings in
each dimension to improve classification of known
waters.

these waters are important in mediating the binding procesligand binding or “conserved” (participating in binding) has
by forming one or two water “bridges” between the proteinnot been well-characterized. If the roles of the active-site wa-
and the ligand. Such water-mediated ligand interactions aiters could be predicted, this would have broad and important
essential to biological processes, yet the structural chemistbiotechnology applications in protein structural determina-
governing which active-site waters are “displaced” upontions and molecular simulations. The GA-Knn is used to pre-



dict which active-site waters participate in ligand binding. 5 vectorw, which was 1 x|yl | the number of features).

T e sees ot cors e oy (i 3 flows. Eacn lemen n e G popua-
PP : tion will be a tred, consisting of a root nodeand Y| sub-

the environment of 1700 randomly-selected water molecule :

(850 conserved and 850 displaced) bound to 13 different pr(trees. Each of these subtrees, dentg;ladherel ranges over

tein structures as well as parameter settings to run the GA @ll the subtrees, encodes a function based on the non-termi-
the protein-waters problem. 157 these waters were from trnal/function sefF and the terminal s&t For our runs, F ={+,
active sites of these proteins, and 102 of these were used-, *, /protected and T = {ERG y;} where ERCis an ephem-
train the GA-Knn. Four features were used to characterize trera| random constant aggs the original value of the feature
environment of each water molecule in the ligand-free Strucbeing tested (see [K0za92] for more details).

:g:e(ntgf,;\ﬁé?r E%Ieealijrl]e Stﬁgitlil_ll(;%riﬁfr)"c tLeemﬁﬁrrr?tt)lgre (‘;?C Eac_h tree generates a new fe_ature space modifica;iqn for its
hydrogen bon’ds betwegn water and p)r/o'tein the number 'assouated feature in the following manner. Each training ex-
protein atoms packed around the water mo’lecule (“atomi‘emplar’s feature elemepf is passed through its associated
density”), and the tendency of those protein atoms to attra1ty. yielding a modified feature valué. . Testing of a new
or repel water (“hydrophilicity”)[Kuhn95, Raymer96]. Each v :
training water was labelled “conserved” or “displaced” basec'. ) ;
upon the known ligand-bound protein structure. rion f_un_ctlonJ() to the .performance of the Knn in properly
The resulting new Knn space weighted the four features a(classﬁymg exemplars into pattern classes.

cording to importance, and this weighting was then used t3.2 Implementation details for Application to the Pro-
predict the behavior of waters from the active site 0BW  tein Binding Problem

proteins. This second test is unbiased and therefore used THe gp part of the system was implemented in lilgp
predictor of the effectiveness of the GA-Knn. Results are infjigngs]. To maintain multiple subtrees for each member of
dicated in Table 1. As shown, the modified Knn was able tihe population, we hardcoded each individual’s root note to
predict with 75% accuracy which active-site water molecule:consist of only calls to each of the required subtrees, then en-
were conserved or displaced in the 7 proteins on which it Wesgged each subtree as an Automatically Defined Function
not'grained. A.n example of the action of the GA on this datE(ADF) using lilgp’s ADF library. Typical runs were done
set is shown in Figure 2. _ _ _ with a population size of 100 (4 subtrees per individual for
Furthermore, where the algorithm mispredicted a water tthe protein problem, since there are 4 features), and run for
be conserved (when it was in fact displaced), that water we3pp generations (or to convergence, whichever came first).
often found to be displaced by a water-like polar atom in thqnitialization was ramped-half-and-half with depths running
bound ligand, indicating that the GA-Knn is correctly assesspetween 2 and 6. Maximum tree depth was maintained at 17.
ing the favorably of a protein’s environment for binding wa- Crossover was done at 90% (90% internal, 10% external) us-
ter and similar polar atoms. The 75% predictive accuracy fOjng fitness-proportionate selection, and reproduction at 10%,
waters involved in protein-ligand binding (90% accuracy ifa|so using fitness-proportionate selection. No mutation was
we include displacement by a polar ligand atom) shows thysed in these runs. On a Sparc workstation (Model 502,
remarkable ability of the GA to address what was consideresomHz) using only the 157 active-site waters for training, it
to be an intractable problem when the ligand-bound structurtook 2 hours for 300 generations. Training on the 1700 waters

is unknown. This predictive accuracy exceeds all ab initio 0gn the same machine took ~80 hours for 300 generations.
knowledge-based methods for protein secondary structur:

prediction, of which the best algorithms approach 72%4, GP Results
[Mehta95, Rost93].

vector is then done as before (see Figure 2), setting the crite-

Table 2 shows that the GP approach provides an overall
3. Using a GP to |mprove Performance improvement in prediction accuracy of 79% as opposed to
75% for the GA runs. The form of the functions representing
While the GA-Knn has proven very effective in data min-the best run of the 1700-training/157-target class are shown
ing examples, it has limitations. The encoding employedn Figure 3. Note that feature-3's function is a constant, and
above allows for onljinear combinations of features. While feature-0 is a linear function. Feature-1 approximates a delta
a linear weighting is often sufficient, many natural processefunction at 0, but reduces to a constant value of 0 since the
have nonlinear dependencies. We addressed this problem features were normalized to the range [1,1§]. Feature-2 has a
substituting a GP for the GA so we might derive both lineaicomplicated functional form, but resembles.-®verall, the
and nonlinear relationships. We previously addressed thifunctions for feature-0 and feature-2 contribute the most to
problem [Punch93], by showing a GA could find Weights forthe classification process.
predeterminechonlinear functions. Here, we generalize to
finding both the weightand the functions themselves. Fur- 5§, Discussion
ther, for the protein-ligand waters problem, we show tha

such an approach leads to a “better” solution. While the GP performance on active-site waters was just
. _r ) slightly better overall than the GA, the GP results are more
3.1 Modified Definition for GP Feature Extraction interesting for other reasons.

We continue to employ the Knn approach, but improve First, the GP typically found a better answer than the GA.
how we modify the Knn space. Previously, our GA generateiSecond, the GP was able to predict better using fewer fea-



Table 2: Results of Training and Unbiased Testing of Waters Displacement using the GP-Knn

Training Set Water Status (Predicted/Observed) Total %

training set (target set) Conserved Displaced

1700 waters, including 157 active site 31/42, (74%) | 93/115, (81%) 124/157 (79%)
waters used for testing, k=3, (biased test)

FeatureQ Feature3 Featurel Feature2
(- X 47.70) (* 5273 (/46.73 (* (- (+x 6.19)
52.73) (* x (- (- 63.68 x)
(" x (- X))
(* xx)))) ¢ (+ (* (+ (*x%)
GP function for Atomic Hydrophilicity (+ X
450000 T T (+ 68.41 x))) 98.58)
feature 1 <— (* X X))
400000 |- 1 (+(+x
(* (+ (* (+ 24.90 71.11)
350000 J - (+(xx)
(+ 24.90 71.11))
200000 - | (+ (+68.41 %)
(/ (- 34.46 33.91) x)))
(- 89.92 x))) 71.11)
250000 1 (* (- 63.68 x)
¢ (- (+( (- 11.85 75.01)
200000 1 (* x X))
(* (+ 24.90 71.11)
150000 |- 1 (* (* (- 89.92 x)
(+ 95.45 x))
| i (+ (*xx)
100000 (+ 24.90 71.11)))))
* (% (% X X
50000 |- 1 - ( (S_ X x)))
(- 31.87
%10 s 0 : " (/ (* (+ 68.41
(- 79.11 59.11))
GP function for B Value (* (+ 95.45 x)
2.5e+31 T 7
e " feature 2 +— ( (*);())))()))
* X X
2er31 % (- (- 63.68 x)
1.50+31 1 (%))
(*x
(+ (*xx)
le+31 b
¢ (+( (*2)(4)80 71.11))
5e+30 i + 24. .
(+ (- (-x
0 (+ (*xx)

(* xx)))
(- 79.11 59.11))
(+ (* (+ 46.95
(+x
(+ 68.41 x))) 98.58
(*x90)))
(- (*xx)

(/ 46.95 40.26)))))

-5e+30

T

-le+31

T

-1.5e+31

T

-2e+31

-2.5e+31 L L
-10 -5 0 5 10

Figure 3 The 4 functions of the best Knn rule. Feature0’s function is linear, and feature3’s is constant. The plo
of featurel and feature2’s function are shown. In the Gp-Knn, only values in the range [1,10] were used.



tures than the GA. In the GP run shown in Table 2, primarily gramming of Computer by Means of Natural Selection,

two features were used to improve predictions relative to th  M|T Press, 1992.

GA results of Table 1 which employed four features. Third, o ) )

the resulting functions were more scientifically interestinglKuhn92] L.A. Kuhn, M.A. Siani, M.E. Pique, C.L. Fisher,

because they suggest functional dependencies for each oft E.D. Getzoff, and J.A. Tainer, “The Interdependence of

four features. This could not be done in the GA since only i Surface Topography and Bound Water Molecules

linear relationship was available. It is these relationships th: Reayealed by Surface Accessibility and Fractal Density
make the GP-Knn approach more interesting for difficult Measures”). Mol. Biol 228, 13-22

problems like the protein-binding problem. Fourth, the pop-
ulation and individual best fitness for the GA and the GP (no[Kuhn95] L.A. Kuhn, C.A. Swanson, M.E. Pique, J.A.

shown) were quite different. The GA quickly reached a pla- Tginer, and E.D. Getzoff,“Atomic and Residue Hydrophi-

teau for “best” fitness the GP for the population and the bes . . . .
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cate the kind of function each feature would require. As the Research Application Group (GARAGe). http://
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on the data mining problem. “Genetic Algorithms for Classification and Feature

Finally, the results presented here show the power of th Extraction,” presented &lassification Society Confer-
GA and GP, in combination with a Knn classifier, to solve ence June 95.
what was considered an intractable problem in protein struc
tural prediction, and to provide insight into the features gov[Punch93] W.F. Punch, E.D. Goodman, Min Pei, et al. “Fur-
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