
Abstract

This paper describes a genetic algorithm
approach to the dynamic job shop scheduling
problem with jobs arriving continually. Both
deterministic and stochastic models of the
dynamic problem were investigated. The objec-
tive functions examined were weighted flow time,
maximum tardiness, weighted tardiness,
weighted lateness, weighted number of tardy
jobs, and weighted earliness plus weighted tardi-
ness. In the stochastic model, we further tested
the approach under various manufacturing envi-
ronments with respect to the machine workload,
imbalance of machine workload, and due date
tightness. The results indicate that the approach
performs well and is robust with regard to the
objective function and the manufacturing envi-
ronment in comparison with priority rule
approaches.

1 INTRODUCTION

Manufacturing environments in the real world are subject
to many sources of change which are typically treated as
random occurrences, such as new job releases, machine
breakdowns, etc. Due to their dynamic nature, real world
scheduling problems are rather computationally complex
and are known to be strongly NP-hard -- i.e., the time
required to compute an optimal schedule increases expo-
nentially with the size of the problem. From a practical
vantage, a large number of priority rule approaches have
been proposed and tested to address dynamic problems.
While priority rules are computationally efficient and are
useful for finding a reasonably good solution, prioritizing
the jobs based on only a few job or machine parameters
restricts the search capability. As was asserted by Adams
et al. [1], given the computing power available today, it
becomes more important to design effective approaches to
obtain better schedules, even at additional computational
cost. This paper describes one such approach.

Since Davis proposed the first GA-based technique to
address scheduling problems in 1985 [3], GAs have been
used with increasing frequency in the context of job shop

scheduling problems (JSSPs). Much of the GA research on
this subject studied only static JSSPs, in which all jobs are
ready to start at time zero, with the makespan objective. In
dynamic JSSPs, which are more realistic, jobs can arrive at
some known (deterministic JSSPs) or unknown (stochastic
JSSPs) future times. Further, the importance of each job
can be different and the objective is more complex. In this
study, we develop a GA approach that is modified from the
original static JSSP version to address deterministic
JSSPs. The stochastic JSSP may be decomposed into a
series of deterministic problems by the method proposed
by Ramanet al [13]. A deterministic problem is generated
at each occurrence of a nondeterministic event, and then
solved by the GA. This paper considers two important
issues. First, both deterministic and stochastic JSSPs with
different objectives are examined. In stochastic JSSPs, we
further investigate the influence of the manufacturing envi-
ronment, such as different machine workloads, imbalance
of machine workload, and different flow allowances. The
results are compared with priority rules to assess the rela-
tive performance and the robustness of the proposed
approach. Second, we propose an innovative rescheduling
method which modifies the adapted population into a new
population between successive events. The temporal rela-
tions among the operations in each individual of the

Table 1: Notation

J Number of available jobs
M Number of machines
Pj Total processing time of jobj
Rj Remaining processing time of jobj
pjm Processing time of jobj on machine m
pm Average operation processing time on machinem
am Available time of machinem
r j Release time of job j
r jm The earliest time at which operation(j, m) can start
dj Due date of job j
wj Weight of job j
nj Number of remaining operations of job j
Cj Completion time of job j
Lj Lateness of jobj = Cj-dj

Tj Tardiness of job j = max(Lj, 0)
Ej Earliness of job j = max(-Lj, 0)

Uj Unit penalty of job j =
1 if C j d j>

0 otherwise



A Genetic Algorithm Approach to Dynamic Job Shop Scheduling Problems

Shyh-Chang Lin Erik D. Goodman William F. Punch, III

Genetic Algorithms Research and Applications Group
230 Engineering Building
Michigan State University
East Lansing, MI 48824

adapted population are preserved. This method is com-
pared with rescheduling from scratch and yields impres-
sive results. The remainder of the paper is organized as
follows. Section 2 defines the dynamic JSSP studied. Sec-
tion 3 describes our approach to dealing with dynamic
JSSPs and the rescheduling problem. Sections 4 and 5
report computational results for the deterministic and sto-
chastic problems, respectively. Section 6 presents our con-
clusions.

The notation used in this paper is shown in Table 1.

2 DYNAMIC JOB SHOP SCHEDULING
PROBLEM

Job shop scheduling, in general, consists of a set of con-
current and conflicting goals to be satisfied using a finite
set of machines. Each job has a processing order through
the machines which specifies the precedence restrictions.
The importance of jobj relative to the other jobs in the
system is denoted by the weightwj. The main constraint of
jobs and machines is that one machine can process only
one operation at a time and preemption of any operation
on any machine is prohibited. Additionally, we assume
that the processing times are known when jobs arrive at
the shop and the machines are always available (whenever
not in use by another job). Usually we denote the general
JSSP asJxM, whereJ is the number of jobs andM is the
number of machines. The operation of jobj on machinem
is denoted by operation (j, m). Based on the release times
of jobs, JSSPs can be classified as static or dynamic sched-
uling. In static JSSPs, all jobs are ready to start at time
zero. Indynamic JSSPs, job release times are not fixed at a
single point, that is, jobs arrive at various times. Dynamic
JSSPs can be further classified as deterministic or stochas-
tic based on the manner of specification of the job release
times. Deterministic JSSPs assume that the job release
times are known in advance. Instochastic JSSPs, job
release times are random variables described by a known
probability distribution.

In dynamic JSSPs, minimizing makespan is of less interest

because the scheduling horizon is open and the makespan
gives no credit for jobs that finish well before the last one
finishes. Reducing turnaround time through the shop or
reducing the amount of tardiness is usually the primary
objective. Therefore, we consider six other objective func-
tions, described in Table 2. For reporting purposes, we use
the normalized value of the objective, which is also
defined in Table 2. Except for the objective of weighted
flow time, these objective functions are due-date-related.
Also note that the weighted earliness plus weighted tardi-
ness is a nonregular objective function -- finishing a job
earlier may not represent improved performance.

3 A GA-BASED SCHEDULING SYSTEM

3.1 THE APPROACH FOR STATIC JSSPs

The proposed approach to dynamic JSSPs is based on our
original GA-based scheduling system devised for static
JSSPs [11]. Here we briefly describe the approach for
static JSSPs. Each individual is a direct representation
which encodes for each operation (in index order) its start-
ing time in a feasible schedule. The number of fields on
the chromosome is the number of operations. Such a direct
representation doesn’t suffer from the problem of false
competition-- different representations of the same sched-
ule competing against one another -- which is found in
some indirect representation schemes [7]. Another advan-
tage in the direct representation is the ease of encoding the
schedule into the chromosome. In some indirect represen-
tations, such as prioritization of scheduling rules [4], it is
difficult to encode the schedule back to the chromosome.
This advantage is more important in our approach because
the genetic operators we designed work on the schedule
level and the modified schedules need to be encoded back
to the chromosomes. The genetic operators are inspired by
the Giffler and Thompson (G&T) algorithm [8]. The G&T
algorithm is a systematic approach to generateactive
schedules, in which no operations can be completed earlier
without delaying other operations. We give a brief outline
of the G&T algorithm in Figure 1. Some previous
approaches which are G&T-algorithm-based can be found.

Table 2: Objective Functions

Objective function Definition Definition (Normalized)

Weighted Flow Time

Maximum Tardiness

Weighted Tardiness

Weighted Lateness

Weighted Number of Tardy Jobs

Weighted Earliness plus Weighted Tardiness

w j C j r j–()
j

∑ w j C j r j–()
j

∑ 
  w j p j

j
∑ 

 ⁄

max T jj
max T jj 

  p j
j

∑ 
 ⁄

w jT j
j

∑ w jT j
j

∑ 
  w j p j

j
∑ 

 ⁄

w jL j
j

∑ w jL j
j

∑ 
  w j p j

j
∑ 

 ⁄

w jU j
j

∑ w jU j
j

∑ 
  w j

j
∑ 

 ⁄

w j E j T j+()
j

∑ w j E j T j+()
j

∑ 
  w j p j

j
∑ 

 ⁄

in [4,5,10,16,17]. Basically, the G&T algorithm is used as
an interpreter to decode any offspring into an active sched-
ule. At each decision point in the G&T algorithm (step 4 in
Figure 1), the operation with the earliest starting time
reported in the parental schedule is chosen to be scheduled
next. In contrast to previous approaches, which work on
the chromosome level, the designed time horizon
exchange (THX) crossover works on the schedule level.
THX crossover randomly selects a crossover point just like
a standard crossover, but instead of using the crossover
point to exchange two chromosomes, THX crossover uses
the crossover point as a scheduling decision point mark in
the G&T algorithm to exchange information between two
schedules. Before the decision point mark, the temporal
relations among operations are inherited from one parent.
In the remaining portion, the temporal relations are inher-
ited from the other parent to the extent possible (i.e., while
maintaining a valid schedule). The mutation operator ran-
domly selects two operations in the block -- a sequence of
successive operations on the critical path which are on the
same machine with at least two operations. These two
operations are reversed. After the mutated child is gener-
ated, we apply the G&T algorithm to interpret the child.

This scheduling system has been tested on some static job
shop benchmarks and produced excellent results [11]. We
further tested many models and scales of parallel GA in
the context of static JSSPs. In our previous experiments,
the hybrid model consisting of coarse-grain GAs con-
nected in a fine-grain-GA-style topology performed best,
appearing to integrate successfully the advantage of
coarse-grain and fine-grain GAs.

3.2 THE APPROACH IN DYNAMIC JSSPs

The scheduling system described in the previous subsec-
tion can be applied to dynamic JSSPs after a few modifica-
tions. For deterministic JSSPs, we modify step 1 of the

G&T algorithm to take account of the job release times as
follows:

Step 1:
Let C contain the first schedulable operation of each
job;
Let r jm = r j, for all operations (j, m) in C.

After the modification, the genetic operators are able to
deal with deterministic JSSPs. To address stochastic
JSSPs, we decompose the stochastic JSSP into a series of
deterministic problems using the method proposed by
Ramanet al [13]. A deterministic problem is generated
whenever a new job enters the system. At each such point
in time, the job information is updated. If jobj is com-
pleted before that point in time, we remove jobj from the
system. If only some operations of jobj are completed
before that point or being processing at that point, we
modify job j by removing these operations and update the
release time of jobj. Because one or more machines can
be busy at the time of a job arrival, such machines are
blocked out for the period of commitment. Assuming the
machine is available at timeam, we modify step 1 of the
G&T algorithm to take into account the machine’s
blocked-out times as follows:

Step 1:
Let C contain the first schedulable operation of each
job;
Let r jm = max(r j, am), for all operations (j, m) in C.

Figure 2 shows an example of the time decomposition
method. A new job 6 arrives at the system at time 25.
Machine 1, 3, 4, and 6 are blocked out because they are
busy at time 25. Some operations are removed from the
system and the information for job 6 is added to the new
problem.

3.3 THE RESCHEDULING PROCESS

In stochastic JSSPs, after a new deterministic problem is
generated at the time of a job arrival, it requires modifica-
tions in the existing schedule. Two methods can address
the rescheduling problem. One is to discard the old popu-
lation and construct the new schedule from scratch. This
can be done simply by restarting the scheduling system
with the new job shop problem. The other method uses a
special feature of GAs which was observed by Bierwirthet
al. [2]. Consider the final population in the last time
period. Because typically only a few operations are
removed from the last (deterministic) job shop problem to
generate the new problem, only a small fraction of the
information in the population has changed. Thus it is rea-
sonable to create an initial population by modifying the
already adapted individuals to the needs of the new prob-
lem and then to allow the GA to continue the search based
on the modified population. Bierwirthet al. did not do fur-
ther investigation on this idea. Here we propose an innova-
tive method to modify the adapted population. This
method is also based on the G&T algorithm. When con-

Step 1:
Let C contain the first schedulable operation of each job;
Let r jm = 0, for all operations (j, m) in C.

Step 2:

Compute t(C) = {r jm + pjm}

and letm* denote the machine on which the minimum is
achieved.

Step 3:
Let G denote the conflict set of all operations (j, m*) on
machinem* such that

r jm* < t(C)
Step 4:

Randomly select one operation fromG and schedule it.
Step 5:

Delete the operation fromC; include its immediate suc-
cessor inC, updater jm in C and return to step 2 until all
operations are scheduled.

Figure 1: The Giffler and Thompson Algorithm

min
j m,() C∈

M1

M2

M3

M4

M5

M6

25

25

30

30

40

40

50

50

60

60

1

1

2

2

3

3

4

4

4

5

5

5

5

M1

M2

M3

M4

M5

M6

0

0

10

10

20

20

30

30

40

40

50

50

60

60

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4

5

5

5

5

5

5

job arrives at time 25

Job Release time Operation routing (processing time)
 1 0 3(1) 1(3) 2(6) 4(7) 6(3) 5(6)
 2 0 2(8) 3(5) 5(10) 6(10) 1(10) 4(4)
 3 0 3(5) 4(4) 6(8) 1(9) 2(1) 5(7)
 4 0 2(5) 1(5) 3(5) 4(3) 5(8) 6(9)
 5 0 3(9) 2(3) 5(5) 6(4) 1(3) 4(1)

Machine 1 2 3 4 5 6
Available time 0 0 0 0 0 0

Job Release time Operation routing (processing time)
 1 26 6(3) 5(6)
 2 33 1(10) 4(4)
 3 27 2(1) 5(7)
 4 27 4(3) 5(8) 6(9)
 5 25 5(5) 6(4) 1(3) 4(1)
 6 25 2(3) 4(3) 6(9) 1(10) 5(4) 3(1)

Machine 1 2 3 4 5 6
Available time 27 25 27 26 25 33

Figure 2: A Time Decomposition Example

M1

M2

M3

M4

M5

M6

25

25

30

30

40

40

50

50

60

60

70

70

1

1

2

2

3

3

4

4

4

5

5

5

5

6

6

6

6

6

6

M1

M2

M3

M4

M5

M6

0

0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4

5

5

5

5

5

5

(a) A schedule in the last population (b) A schedule in the initial population
 of the new problem

Figure 3: An Example of Modifying A Schedule From the Last Population To
 the Initial Population of the New Problem.

structing an individual in the initial population of the new
problem, the temporal relations among the operations
which are also in the last problem are inherited from an
individual in the adapted population to the extent possible.
The operations of the new job(s) are randomly scheduled
among the old jobs. This modification process is imple-
mented by changing step 4 of the G&T algorithm as fol-
lows:

Step 4:
Randomly select one operation fromG.
If the operation is from the new job(s), schedule it;
else schedule the operation inG from the old prob-

lem with the earliest starting time reported in the
individual of the adapted population.

Figure 3 shows an example of modifying an individual
from the last population to the initial population of the new
problem. This example follows the example in Figure 2.

The operations of the new job 6 are inserted among the
other operations while the temporal relations among the
old operations are preserved to the extent possible.

4 COMPUTATIONAL STUDY --
DETERMINISTIC PROBLEMS

4.1 EXPERIMENTAL DESIGN

Deterministic JSSPs can be solved in either an exact or
heuristic manner. One example of an exact method is a
depth-first branch-and-bound algorithm which builds a
schedules forward in time [15]. Heuristic methods are
especially interesting for practical applications. The most
often used heuristic method is the priority rule approach
which schedules the highest priority job whenever a
machine becomes available. The priority is based on some
easily computed parameters of the jobs, operations, or

Table 3: A List of Example Priority Rules

Rule Description Priority of operation (j, m) at timet

RANDOM Randomly select a schedulable operation equal priority

FCFS First Come First Serve 1/r j

WSPT Weighted Shortest Processing Time wj/pjm

WLWKR Weighted Least Work Remaining wj/Rj

WTWORK Weighted Total Work wj/Pj

EGD Earliest Global Due-date 1/dj

EOD Earliest Operational Due-date 1/[r j + (dj-r j)Rj/Pj]

EMOD Earliest Modified Operational Due-date 1/max(r j+(dj-r j)Rj/Pj, t+pjm)

MST Minimum Slack Time -(dj-Rj-t)

WS/OP Weighted Slack per OPeration wj[1-(dj-Rj-t)/nj)]/pjm

WCR Weighted Critical Ratio wj[1-(dj-t)/Rj)]/pjm

WCOVERT Weighted COVERT wj[1-(dj-Rj-t)
+/2Rj)]

+/pjm

WR&M Weighted R&M wjexp[-(dj-Rj-t)
+/2Pm)]/pjm

machines, such as processing times, due dates, release
times, and machine loadings. Table 3 is a list of the prior-
ity rules used for comparison in this paper. The test set of
12 deterministic problems was taken from [12]. The objec-
tive functions examined are listed in Table 2. In minimiz-
ing the weighted flow time, we compared our GA
approach with five priority rules -- RANDOM, FCFS,
WSPT, WLWKR, and WTWORK rules. For the other
objective functions, the priority rules used for comparison
were WSPT, EGD, EOD, EMOD, MST, WS/OP, WCR,
WCOVERT, and WR&M rules, except that in minimizing
the maximum tardiness, the non-weighted version of the
priority rules obtained by removing the weighted coeffi-
cient from the weighted version was used. In addition to
these priority rules, we also compared our results with
Fang’s results [6]. Fang’s approach is based on a GA
which uses a variant of an indirect representation devised
for the traveling salesperson problem. The schedule
builder guarantees the validity of the schedule produced
under crossover and mutation. In Fang’s approach, some
methods dealing with the gene convergence rate and the
redundancy in the representation were applied to enhance
the performance.

The scheduling system described has been implemented in
GALOPPS [9] and run in a Unix environment. In all runs,
the crossover and mutation rates were 0.6 and 0.1 respec-
tively, and offspring replaced their parents, with elitism
protecting the best individual from replacement. Two ver-
sions of the GA were tested for the deterministic prob-
lems. One was a single-population GA (SGA) with
population size 50. The other was a parallel GA (PGA) in
which 25 SGAs with subpopulation sizes of 20 were con-
nected in a 5x5 torus. The migration interval was 50 gen-
erations. The number of generations of both versions was
50x(number of jobs).

4.2 RESULTS AND DISCUSSION

Results of the experiment are shown in Table 4. The
reported results are the normalized values (see Table 2).
The results shown in the “Pri.” columns are the best results
found by the priority rules, and the results reported under
the remaining columns are the best results obtained from
10 runs of the corresponding GA for each problem. For the
SGA and PGA, we also report the percentage improve-
ment over the best results found by the priority rules and
Fang. Our results which are worse than others are shaded
light gray. Our SGA and PGA both performed consistently
better than the priority rules. The SGA yields results better
than or equal to Fang’s in 61 of 72 scenarios. The PGA is
seen to provide the best results. Only 3 of its 72 scenarios
are worse than Fang’s. The superior results show that the
THX crossover and mutation successfully transmit useful
characteristics -- i.e., the temporal relationships among
operations. Furthermore, the PGA performs better than the
SGA because the premature convergence problem is alle-
viated by parallelizing the GA, allowing better global
search.

5 COMPUTATIONAL STUDY --
STOCHASTIC PROBLEMS

5.1 EXPERIMENTAL DESIGN

The stochastic job shop simulated has 5 machines with
jobs arriving continually according to a Poisson process.
The process is observed until the completion of 100 jobs.
Each job has a random routing through the system. The
operation processing times at each machine are uniformly
distributed with various means to yield different levels of
machine workload. Two classes of problems were
designed. One was a balanced workload, with five levels
of average machine utilization -- 75%, 80%, 85%, 90%,
and 95%. The other was an unbalanced workload, with

five levels of average machine utilization -- 60%, 65%,
70%, 75%, and 80%, in a 3:2 ratio of machine loads. The
weights of jobs were uniformly distributed between 1 and
2. For the objective of weighted flow time, no due date was
assigned to the 10 scenarios, and 10 test problems were
randomly generated for each scenario. In total, therefore,
100 problems were created for the objective of weighted
flow time. For the other due-date-related objective func-
tions, jobs have due dates set at arrival time plusF times
their processing times, whereF is the flow allowance fac-
tor to control due date tightness. Five levels of due date
tightness were tested --F = 2, 3, 4, 5, and 6. Therefore,
there were 50 scenarios. For each scenario, 5 problems
were randomly generated, so 250 problems were created
in total for the due-date-related objective functions.

The priority rules for comparison were the same as in the
study of deterministic problems. In the stochastic prob-
lems, a deterministic problem is generated whenever an
event occurs --i.e., new job(s) arrive. The number of gen-
erations was set at 200 for each event. The average compu-
tational cost for each event is 7.0 seconds. For the

objective of weighted flow time, two versions of the SGA
were examined. The first reschedules the new determinis-
tic problem from scratch. The second reschedules by using
a modified population. For the other objective functions,
we applied only the second SGA to compare with the pri-
ority rules.

5.2 RESULTS AND DISCUSSION

The results of the weighted flow time objective are shown
in Table 5. We report the best results found by the priority
rules. SGA-scratch and SGA-modified are the SGAs with
rescheduling from scratch and from a modified population,
respectively. The results of the two genetic approaches are
the average best results of the ten problems of each sce-
nario. The best results were obtained from 10 runs for each
problem. The percentage improvement of the SGAs over
the priority rules is also shown. Both versions of the SGA
outperform the priority rules, and the SGA-modified per-
forms better than SGA-scratch. The relative superiority of
the SGA-modified is higher under heavy workload, such
as the runs of the 90% and 95% balanced workload mod-

Table 4: The normalized Results of the Deterministic Problems

Prob. Size Weighted Flow Time Weighted Tardiness Maximum Tardiness

Pri. Fang SGA PGA Pri. Fang SGA PGA Pri. Fang SGA PGA

JB1 10x3 1.231 1.237 1.231(0.0) 1.231(0.0) 0.178 0.164 0.162(1.2) 0.162(1.2) 0.082 0.082 0.082(0.0) 0.082(0.0)

JB2 10x3 1.772 1.778 1.768(0.2) 1.768(0.2) 0.086 0.087 0.086(0.0) 0.086(0.0) 0.055 0.055 0.055(0.0) 0.055(0.0)

JB4 10x5 1.111 1.109 1.108(0.1) 1.108(0.1) 0.560 0.5560.559(-0.5) 0.559(-0.5) 0.203 0.152 0.152(0.0) 0.152(0.0)

JB9 15x3 1.947 1.768 1.754(0.8) 1.754 (0.8) 0.185 0.177 0.169(4.5) 0.169(4.5) 0.067 0.061 0.044(27.9) 0.044(27.9)

JB11 15x5 1.795 1.794 1.723(4.0) 1.706 (4.9) 0.000 0.000 0.000(0.0) 0.000(0.0) 0.002 0.000 0.000(0.0) 0.000(0.0)

JB12 15x5 1.257 1.259 1.256(0.1) 1.256 (0.1) 0.218 0.139 0.139(0.0) 0.139(0.0) 0.071 0.060 0.060(0.0) 0.060(0.0)

LJB1 30x3 1.494 1.431 1.424(0.5) 1.391 (2.8) 0.276 0.2150.224(-4.2) 0.190(11.6) 0.056 0.041 0.039(4.9) 0.032(22.0)

LJB2 30x3 1.924 1.826 1.783(2.4) 1.777 (2.7) 0.460 0.459 0.410(10.7) 0.395(13.9) 0.078 0.071 0.060(15.5) 0.060(15.5)

LJB7 50x5 1.692 1.669 1.623(2.8) 1.557 (6.7) 0.109 0.110 0.090(17.4) 0.060(45.0) 0.022 0.019 0.016(15.8) 0.016(15.8)

LJB9 50x5 2.490 2.659 2.475(0.6) 2.324 (6.7) 0.796 0.982 0.742(6.8) 0.615(22.7) 0.050 0.075 0.048(4.0) 0.039(22.0)

LJB10 50x8 1.776 1.728 1.731(-0.2) 1.697 (1.8) 0.479 0.4550.478(-5.1) 0.438(3.7) 0.043 0.040 0.040(0.0) 0.034(15.0)

LJB12 50x8 2.207 2.138 2.115(1.1) 2.080 (2.7) 0.489 0.478 0.433(9.4) 0.399(16.5) 0.035 0.043 0.035(0.0) 0.031(11.4)

Prob. Size Weighted Lateness Weighted Number of Tardy Jobs Weighted Earliness plus Tardiness

Pri. Fang SGA PGA Pri. Fang SGA PGA Pri. Fang SGA PGA

JB1 10x3 -0.173 -0.168 -0.173(0.0) -0.173(0.0) 0.433 0.272 0.272(0.0) 0.272(0.0) 0.529 0.475 0.474(0.2) 0.474(0.2)

JB2 10x3 -0.812 -0.824 -0.816(-1.0) -0.839(1.8) 0.097 0.097 0.097(0.0) 0.097(0.0) 0.901 0.758 0.690(9.0) 0.499(34.2)

JB4 10x5 0.497 0.490 0.493(-0.6) 0.493(-0.6) 0.709 0.688 0.688(0.0) 0.688(0.0) 0.622 0.6200.621(-0.2) 0.621(-0.2)

JB9 15x3 -0.047 -0.073 -0.078(6.8) -0.078(6.8) 0.425 0.238 0.236(0.8) 0.236(0.8) 0.395 0.384 0.369(3.9) 0.369(3.9)

JB11 15x5 -0.607 -0.655 -0.730(11.5) -0.751(14.7) 0.000 0.078 0.000(0.0) 0.000(0.0) 0.415 0.263 0.262(0.4) 0.262(0.4)

JB12 15x5 -0.082 -0.102 -0.103(1.0) -0.103(1.0) 0.431 0.434 0.431(0.0) 0.431(0.0) 0.494 0.247 0.246(0.4) 0.246(0.4)

LJB1 30x3 -0.112 -0.195 -0.206(5.6) -0.214(9.7) 0.401 0.309 0.296(4.2) 0.296(4.2) 0.654 0.322 0.322(0.0) 0.279(13.4)

LJB2 30x3 0.013 -0.043 -0.077(79.1) -0.078(81.4) 0.374 0.254 0.233(8.3) 0.233(8.3) 0.868 0.632 0.627(0.8) 0.601(4.9)

LJB7 50x5 -0.411 -0.414 -0.453(9.4) -0.507(22.5) 0.294 0.180 0.167(7.2) 0.126(30.0) 0.515 0.374 0.345(7.8) 0.254(32.1)

LJB9 50x5 0.622 0.702 0.498(19.9) 0.354(43.1) 0.564 0.3090.340(-10) 0.241(22.0) 0.935 1.178 0.833(10.9) 0.739(21.0)

LJB10 50x8 -0.038 -0.096 -0.082(-14.6) -0.108(12.5) 0.533 0.3990.419(-5.0) 0.399(0.0) 0.882 0.6210.688(-10.8) 0.598(3.7)

LJB12 50x8 0.256 0.221 0.192(13.1) 0.113(48.9) 0.478 0.286 0.286(0.0) 0.274(4.2) 0.667 0.607 0.584(3.8) 0.461(24.1)

els. This agrees with the implications of Section 3.3.
Under heavy workload, jobs arrive closely after each other.
Because only a few operations are removed from the sys-
tem, most information retained in the last population
before the new jobs arrive is still useful for the new prob-
lem. The modification process successfully preserves the
information of the temporal relationships and enhances the
efficiency of genetic search. Table 6 shows the results of
the other objective functions with respect to different
workloads and due date tightnesses. We report only the
results of the SGA-modified and the percentage improve-
ment over the priority rules because the results of the pri-
ority rules can be calculated from the information
provided. The results given are the average best results of

the 5 problems of each scenario. The best results are
obtained from 5 GA runs for each problem. Any of our
results which are worse than the priority rules are shaded
light gray. The GA results are worse than the priority rules
in only 5 of 250 scenarios. In general, the relative
improvement of the GA is larger in tight due date situa-
tions for weighted tardiness, maximum tardiness,
weighted lateness, and weighted number of tardy jobs. For
loose due date problems, although the priority rules yield
similar results to the GA for the objective functions which
only involve tardiness, the GA outperforms the priority
rules for all objective functions giving a credit or penalty
to earliness --e.g., for weighted lateness and for weighted
earliness plus weighted tardiness. For the nonregular

Table 5: The Normalized Results of the Weighted Flow Time Objective in the Stochastic Problems

Balance Workload Unbalance Workload

75% 80% 85% 90% 95 60% 65% 70% 75% 80%

Priority Rules 3.809 4.562 4.395 4.730 5.442 3.500 3.619 3.650 4.027 4.286

SGA-scratch 3.493(8.3) 4.134(9.4) 4.141(5.8) 4.436(6.2) 5.290(2.8) 3.275(6.4) 3.325(8.1) 3.369(7.7) 3.771(6.3) 3.880(9.5)

SGA-modified 3.488(8.4) 4.076(10.7) 4.098(6.7) 4.305(9.0) 5.135(5.6) 3.268(6.6) 3.304(8.7) 3.350(8.2) 3.748(6.9) 3.869(9.7)

Table 6: The Normalized Results of the Stochastic Problems

F
Balance Workload Unbalance Workload

75% 80% 85% 90% 95% 60% 65% 70% 75% 80%

Weighted Tardiness

2 0.105(34.0) 0.241(15.4) 0.394(19.6) 0.368(21.0) 0.524(11.9) 0.131(37.0) 0.141(21.7) 0.115(29.9) 0.268(8.2) 0.390(14.7)

3 0.005(70.6) 0.059(34.4) 0.179 (9.6) 0.229(21.8) 0.570 (2.9) 0.00*0.001 0.00*0.002 0.017(56.4) 0.002(71.4)0.127 (-0.8)

4 0.001(80.0) 0.068(29.9) 0.008(57.9)0.112 (-24) 0.097(11.8) 0.004 (0.0) 0.000 (0.0) 0.00*0.001 0.000 (0.0) 0.00*0.001

5 0.000 (0.0) 0.000 (0.0) 0.001 (0.0) 0.006(25.0) 0.056(6.7) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.001(50.0) 0.000 (0.0)

6 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0)

Maximum Tardiness

2 0.009(40.0) 0.012(36.8) 0.021(16.0) 0.017(29.2) 0.021(12.5) 0.012(29.4) 0.011(35.3) 0.009(30.8) 0.016(11.1) 0.017(22.7)

3 0.002 (0.0) 0.006(45.5) 0.013(23.5) 0.016(20.0) 0.024(17.2) 0.00*0.001 0.00*0.001 0.003(50.0) 0.001(50.0) 0.010(23.1)

4 0.001 (0.0) 0.006(33.3) 0.004(33.3) 0.006 (0.0)0.008 (-14) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.00*0.001

5 0.000 (0.0) 0.000 (0.0) 0.00*0.001 0.002(33.3) 0.005(28.6) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0)

6 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0)

Weighted Lateness

2 -0.36 (70.7) -0.10(406) 0.098(67.8) 0.045(84.6) 0.208(44.1) -0.29 (67.6) -0.27 (133) -0.29(68.9) -0.08(239) 0.079(66.7)

3 -1.24(23.6) -0.96(28.0) -0.74(32.6) -0.52(64.6) -0.01(107) -1.417(7.9) -1.339(5.7) -1.140 (14) -1.36(13.3) -0.871(5.4)

4 -2.251(8.3) -1.64(11.8) -1.72(13.6) -1.84(10.0) -1.34(12.8) -2.415(4.0) -2.259(6.8) -2.296(4.9) -2.318(6.4) -1.99(11.0)

5 -3.261(6.6) -3.091(5.2) -2.835(7.1) -2.674(7.2) -2.232(5.3) -3.535(2.5) -3.334(3.7) -3.375(4.1) -3.235(5.6) -3.038(5.8)

6 -3.863(4.9) -4.062(4.7) -3.735(3.9) -3.898(5.1) -3.295(7.4) -4.431(2.2) -4.472(3.4) -4.245(3.1) -3.940(4.8) -3.957(4.1)

Weighted Number of Tardy Jobs

2 0.105(46.7) 0.181(33.9) 0.252(23.2) 0.229(28.0) 0.261(15.8) 0.122(39.6) 0.142(37.7) 0.138(39.2) 0.176(33.3) 0.252(19.7)

3 0.017(68.5) 0.065(49.6) 0.089(36.0) 0.128(31.9) 0.187(21.4) 0.002(60.0) 0.005(50.0) 0.036(56.6) 0.007(77.4) 0.080(12.1)

4 0.003(75.0) 0.041(56.4) 0.027(46.0) 0.025(62.7) 0.059(33.7) 0.000 (0.0) 0.000 (0.0) 0.003 (0.0) 0.000 (0.0)0.006 (-50)

5 0.000 (0.0) 0.000 (0.0) 0.007 (-17) 0.020 (4.8) 0.055(22.5) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.007 (0.0) 0.000 (0.0)

6 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.003 (0.0) 0.004 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0)

Weighted Earliness plus Weighted Tardiness

2 0.261(41.1) 0.367(18.8) 0.532(12.4) 0.495(18.7) 0.615(14.9) 0.327(37.6) 0.284(36.0) 0.259(35.9) 0.396(13.9) 0.531 (8.0)

3 0.260(63.7) 0.330(46.1) 0.450(31.7) 0.564 (7.2) 0.873 (8.2) 0.388(59.6) 0.262(68.8) 0.338(54.3) 0.309(64.4) 0.400(40.8)

4 0.552(63.9) 0.541(50.5) 0.437(57.2) 0.513(61.4) 0.471(35.6) 0.756(56.6) 0.553(61.7) 0.697(57.2) 0.438(70.0) 0.418(63.3)

5 1.018(55.8) 0.749(62.3) 0.665(62.9) 0.633(60.6) 0.711(48.7) 1.749(42.2) 1.371(47.1) 1.110(58.5) 1.076(55.1) 0.682(64.5)

6 1.097(57.4) 1.203(55.9) 0.927(61.9) 1.018(62.0) 0.699(55.9) 2.378(36.7) 2.434(36.9) 1.633(48.8) 1.011(59.5) 1.279(53.9)

*The GA found result 0 but the priority rules didn’t. Instead of showing the improvement, the best found by the priority rules is shown.

objective,i.e., weighted earliness plus weighted tardiness,
the priority rules perform much worse than the GA
because such a nonregular objective is harder for priority
rules to optimize, given that they consider only a few job
or machine parameters. This result also shows the superi-
ority of the GA for the nonregular objective function.

6 CONCLUSION

This paper extends the previous research on static JSSPs to
dynamic JSSPs in which jobs arrive continually. The idea
of a decomposition approach with rescheduling using a
modification of the adapted population is quite general,
and can be implemented for dynamic JSSPs with other
stochastic events such as machine breakdowns, job cancel-
lations, due date changes, etc. The experimental results
show that significant improvement over priority rule
approaches was achieved for both deterministic and sto-
chastic JSSPs using a genetic algorithm approach. Con-
sider the results for various objective functions: while no
one priority rule dominated other priority rules for all
objective functions, our approach consistently outper-
formed the priority rules. Such a consistent superiority
shows the robustness of the GA to the objective functions.
Another interesting result concerns the manufacturing
environment. Ramanet al. [14] reported that the selection
of a different and appropriate scheduling rule improves the
system performance under different manufacturing envi-
ronments. In contrast to that claim, our approach outper-
formed the priority rules with respect to the machine
workload, imbalance of machine workload, and due date
tightness. This shows the robustness of the GA to the man-
ufacturing environment.

References

[1] Adams, J., Balas, E., and Zawack, D. “The Shifting
Bottleneck Procedure in Job Shop Scheduling,”
Management Science, vol. 34, pp. 391-401, 1988.

[2] Bierwirth, C., Kropfer, H., Mattfeld, D.C., and
Rixen, I., “Genetic Algorithm based Scheduling in a
Dynamic Manufacturing Environment,”IEEE Conf.
on Evolutionary Computation, Perth, IEEE Press,
1995.

[3] Davis, L., “Job-shop Scheduling with Genetic
Algorithms,” Proc. Int’l Conf. on Genetic
Algorithms and their Applications, pp. 136-149,
Lawrence Erlbaum, Hillsdale, NJ, 1985.

[4] Dorndorf, U. and Pesch, E. “Evolution Based
Learning in a Job Shop Scheduling Environment,”
Computers Operations Research, vol. 22, pp. 25-40,
1995.

[5] Dorndorf, U. and Pesch, E. “Combining Genetic-
and Local Search for Solving the Job Shop
Scheduling Problem,”APMOD93 Proc. Preprints,
pp. 142-149, Budapest, Hungary, 1993.

[6] Fang, H., “Genetic Algorithms in Timetabling and
Scheduling,” Ph.D. thesis, Department of Artificial
Intelligence, University of Edinburgh, 1994.

[7] Fang, H., Ross, P. and Corne, D., “A Promising
Genetic Algorithm Approach to Job-Shop
Scheduling, Rescheduling, and Open-Shop
Scheduling Problems,”Proc. Fifth Int’l Conf. on
Genetic Algorithms, pp. 375-382, Morgan
Kaufmann, San Mateo, CA, 1993.

[8] Giffler, J. and Thompson, G.L., “Algorithms for
Solving Production Scheduling Problems,”
Operations Research, Vol. 8, pp. 487-503, 1960.

[9] Goodman, E. D.An Introduction to GALOPPS,
Technical Report GARAGe95-06-01, Genetic
Algorithms Research and Applications Group,
Michigan State University, 1995.

[10] Kobayashi, S., Ono, I., and Yamamura, M. “An
Efficient Genetic Algorithm for Job Shop
Scheduling Problems,”Proc. Sixth Int’l Conf. on
Genetic Algorithms, pp. 506-511, Morgan
Kaufmann, San Mateo, CA, 1995.

[11] Lin, S.-C., Goodman, E.D., and Punch, W.F.,
“Investigating Parallel Genetic Algorithms on Job
Shop Scheduling Problems,” accepted for
publication in the Sixth Annual Conference on
Evolutionary Programming, 1997.

[12] Morton, T.E., and Pentico, D.W.,Heuristic
Scheduling Systems, John Wiley & Sons, 1993.

[13] Raman, N., Rachamadugu, R.V., and Talbot, F.B.,
“Real-time Scheduling of an Automated
Manufacturing center,” European Journal of
Operational Research, vol. 40, pp. 222-242, 1989.

[14] Raman, N., Talbot, F.B., Rachamadugu, R.V., “Due
Date Based Scheduling in a General Flexible
Manufacturing System,”Journal of Operations
Management, vol. 8, no. 2, pp. 115-132, 1989.

[15] Raman, N., and Talbot, F.B., “The Job Shop
Tardiness Problem: a Decomposition Approach,”
European Journal of Operational Research, vol. 69,
pp. 187-199, 1993.

[16] Storer, R. H., Wu, S.D., and Vaccari, R. “New
Search Spaces for Sequencing Problems with
Application to Job Shop Scheduling,”Management
Science, vol. 38, pp. 1495-1509, 1992.

[17] Yamada, T. and Nakano, R. “A Genetic Algorithm
Applicable to Large-Scale Job-Shop Problems,”
Parallel Problem Solving from Nature, 2, pp. 281-
290, North-Holland, Amsterdam, 1992.

