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Abstract

This paper describes a GA for job shop scheduling problems. Using the Giffler and
Thompson algorithm, we created two new operators, THX crossover and mutation,
which better transmit temporal relationships in the schedule. The approach produced
excellent results on standard benchmark job shop scheduling problems. We further
tested many models and scales of parallel GAs in the context of job shop scheduling
problems. In our experiments,the hybrid model consisting of coarse-grain GAs con-
nected in a fine-grain-GA-style topologyperformed best, appearing to integrate suc-
cessfully the advantages of coarse-grain and fine-grain GAs.

1  Introduction

Job shop scheduling problems (JSSP’s) are computationally complex problems.
Because JSSP’s are NP-hard -- i.e., they can’t be solved within polynomial time --
brute-force or undirected search methods are not typically feasible, at least for problems
of any size. Thus JSSP’s tend to be solved using a combination of search and heuristics
to get optimal or near optimal solutions. Among various search methodologies used for
JSSPs, the Genetic Algorithm (GA), inspired by the process of Darwinian evolution, has
been recognized as a general search strategy and optimization method which is often
useful in attacking combinatorial problems. Since Davis proposed the first GA-based
technique to solve scheduling problems in 1985 [2], GAs have been used with increas-
ing frequency to solve JSSP’s. In contrast to local search techniques such as simulated
annealing and tabu-search, which are based on manipulating one feasible solution, the
GA utilizes a population of solutions in its search, giving it more resistance to premature
convergence on local minima. The main difficulty in applying GAs to highly con-
strained and combinatorial optimization problems such as JSSP’s is maintaining the
validity of the solutions. This problem is typically solved by modifying the breeding
operators or providing penalties on infeasible solutions in the fitness function. Although
resistant to premature convergence, GAs are not immune. One approach to reduce the
premature convergence of a GA is parallelization of the GA into disjoint subpopula-
tions, which is also a more realistic model of nature than a single population. Currently,
there are two kinds of parallel GAs (PGAs) that are widely used: coarse-grain GAs
(cgGAs) and fine-grain GAs (fgGAs). Both will be studied in the context of JSSP’s.



Section 2 defines the JSSP studied. Our approach to dealing with invalid solu-
tions is described in Section 3. Section 4 describes PGAs and proposes some new mod-
els, and Section 5 details the results of our experiments.

2  Job Shop Scheduling Problem

Job shop scheduling, in general, contains a set of concurrent and conflicting
goals to be satisfied using a finite set of resources. The resources are called machines
and the basic tasks are called jobs. Each job is a request for scheduling a set of opera-
tions according to a process plan (or referred to as process routing) which specifies the
precedence restrictions. The main constraint on jobs and machines is that one machine
can process only one operation at a time and operations cannot be interrupted. Usually
we denote the general JSSP asnxm,wheren is the number of jobs andm is the number
of machines. The operation of jobi on machinej is denoted by operation (i, j). The prob-
lem is to minimize some performance criterion. This paper discusses the most widely
used criterion, i.e., the time to completion of the last job to leave the system -- the
makespan.

One useful model used to describe JSSP’s is the disjunctive graph,G=(N, A, E),
whereN is the node set,A is the conjunctive arc set, andE is the disjunctive arc set. The
nodesN correspond to all of the operations and two dummy nodes, a source and a sink.
The conjunctive arcsA represent the precedence relationships between the operations of
a single job. The disjunctive arcsE represent all pairs of operations to be performed on
the same machine. All arcs emanating from a node have the processing time of the oper-
ation performed at that node as their length. The source has conjunctive arcs with length
zero emanating to all the first operations of the job and the sink has the conjunctive arcs

Step 1:
Let C contain the first schedulable operation of each job;
Let r ij  = 0, for all operations (i, j) in C.
(r ij  is the earliest time at which operation (i, j) can start.)

Step 2:

Compute t(C) = {r ij  + pij}

and letj*  denote the machine on which the minimum is achieved.
(pij  is the processing time of operation (i, j))

Step 3:
Let G denote the conflict set of all operations (i, j* ) on machinej*  such that

r ij* < t(C)
Step 4:

Randomly select one operation fromG.
Step 5:

Delete the operation fromC; include its immediate successor inC, updater ij in
C and return to step 2 until all operations are scheduled.

Fig 1. The Giffler and Thompson algorithm

min
i j,( ) C∈



coming from all the last operations. A feasible schedule corresponds to a selection of
exactly one arc from each disjunctive arc pair such that the resulting directed graph is
acyclic. The problem of minimizing the makespan reduces to finding a set of disjunctive
arcs which minimize the length of the longest path or the critical path in the directed
graph.

In JSSP’s, two classes of schedules are defined. The first issemi-activesched-
ules, the other isactiveschedules. Semi-active schedules are feasible schedules in which
no operation can be completed earlier without changing the job sequence on any of the
machines. Active schedules are feasible schedules in which no operation can be com-
pleted earlier by changing the processing sequence on any of the machines without
delaying some other operation. Clearly the set of active schedules is a subset of the set
of semi-active schedules and optimal schedules are active schedules. Thus, in optimiz-
ing makespan, it is sufficient to consider only active schedules. A systematic approach
to generate active schedules was proposed by Giffler and Thompson [6]. Because this
procedure is closely related to our genetic operators, we give a brief outline of the G&T
algorithm in Fig 1. The key condition in the G&T algorithm is the inequalityr ij* < t(C)
in Step 3, which generates a conflict set consisting only of operations competing for the
same machine. Once one operation is decided, it is impossible to add any operation that
will complete prior tot(C), making the generated schedule an active schedule.

3  Genetic Representation and Specific Operators

“Classical” GAs use a binary string to represent a potential solution to a prob-
lem. Such a representation is not naturally suited for ordering problems such as the
Traveling Salesperson Problem (TSP) and the JSSP, because no direct and efficient way
has been found to map possible solutions 1:1 onto binary strings. Two different
approaches have been used to deal with the problem of representation. The first is an
indirect representation, which encodes the instructions to a schedulebuilder. Some
examples of an indirect representation are job order permutation and prioritization of
scheduling rules. In these schemes, the schedule builder guarantees the validity of the
schedules produced. Another approach is to use adirect representation which encodes
theschedule itself. Some examples of direct representations use encodings of the opera-
tion completion times or the operation starting times. In such a representation, not every
encoding corresponds to a valid schedule. If invalid encodings are allowed in the popu-
lation, repair methods or penalty functions are required to maintain the validity of the
schedules. However, use of penalty functions is inefficient for JSSP’s because the space
of valid schedules is very small compared to the space of possible schedules. Thus, the
GA will waste most of its time on invalid solutions. Another problem with a “classical”
GA representation is that simple crossover or mutation on strings nearly always pro-
duces infeasible solutions. Previous researchers used some variations on standard
genetic operators to address this problem. Well-known examples are sequencing opera-
tors devised for the TSP [17].

Our approach uses a direct representation, which encodes the operation starting
times. The number of the fields on the chromosome is the number of operations. The



genetic operators are inspired by the G&T algorithm. Some related approaches which
are G&T-algorithm-based are briefly reviewed. Yamada and Nakano [18] used operation
completion times for their representation. They proposed using GA/GT crossover, which
ensures assembling valid and active schedules. The GA/GT crossover works as follows:
at each decision point in the G&T algorithm (step 4 in Fig 1), one parent is selected ran-
domly. However, in GA/GT crossover, the schedulable operation which has the earliest
completion time reported in the parental schedule is chosen to be scheduled next. The
effect of GA/GT crossover is the same as applying uniform crossover and using the
G&T algorithm to interpret the resulting invalid chromosomes. Dorndorf and Pesch [3]
encode the operation starting times and apply the G&T algorithm to decode the invalid
offspring which are generated from standard crossover. Other approaches are similar to
the two above. The G&T algorithm is used as an interpreter to decode any offspring into
an active schedule. Table 1 lists the G&T-algorithm-based GA approaches. These
approaches are designed to transmit “useful characteristics” from parents for the cre-
ation of potentially better offspring. These “useful characteristics” can be priority rules
or job sequences, depending on the representation and crossover methods used. In
JSSPs, the temporal relationships among all operations in a schedule are important. Sim-
ply working on the chromosome level usually focuses on only a small part of the sched-
ule and overlooks the change of the temporal relationships in the whole schedule. In
contrast to previous approaches, which work on the chromosome level, we have
designed the time horizon exchange (THX) crossover, which works on theschedule
level. THX crossover randomly selects a crossover point just like a standard crossover,
but instead of using the crossover point to exchange two chromosomes, THX crossover
uses the crossover point as a scheduling decision point in G&T algorithm to exchange
information between two schedules. Fig 2shows an example of THX crossover in Fis-
cher and Thompson’s (FT) 6x6 problem. The portion of the child schedule before the
crossover point is exactly the same as in one parent. The temporal relationships among
operations in the remaining portion are inherited from the other parent to the extent pos-
sible (i.e., while maintaining a valid schedule).

Another important operator in GAs is mutation. The THX mutation operator is
based on the disjunctive graph of the schedule. Although exchanging a single pair of
adjacent tasks which are on the same machine and belong to a critical path can preserve
the acyclic property of the directed graph, the number of child schedules that are better
than the parent tends to be very limited, as was observed by Grabowskiet al. [19]. They
defined ablockas a sequence of successive operations on the critical path which are on
the same machine with at least two operations. The reversal of a critical arc can only
lead to an improvement if at least one of the reversed operations is either the first or the

Table 1. G&T-algorithm-based GA approaches

reference representation crossover
Yamada and Nakano (1992) [18] completion time uniform
Storer et al. (1992) [15] perturbed processing time standard
Dorndorf and Pesch (1993) [3] starting time standard
Dorndorf and Pesch (1995) [4] priority rule standard
Kobayashi et al. (1995) [9] job order subsequence

exchange
Lin et al. starting time time horizon

exchange



last operation of the block. Thus our mutation focuses on the block. Two operations in
the block are randomly selected and reversed. After the child is generated, we apply the
G&T algorithm to interpret the child. Thus, no cycle detection is needed. Furthermore,
the G&T algorithm guarantees that the two selected operations are reversed in the new
schedule and that the new schedule is active.

4  Parallel Genetic Algorithms

Although “classical” GAs can be made somewhat resistant to premature conver-
gence (i.e., inability to search beyond local minima), there are methods which can be
used to make GAs even more resistant. PGAs retard premature convergence by main-
taining multiple, somewhat separated subpopulations which may be allowed to evolve
more independently (or, more precisely, by employing non-panmictic mating). Two fun-
damental models of PGAs can be distinguished in the literature. The first isfine-grained
GAs (fgGAs) [11,13], in which individuals are spatially arrayed in some manner and an
individual in the population can interact only with individuals “close” to it. The topol-
ogy of individuals in the template defining the breeding “neighborhood” determines the
degree of isolation from other individuals and therefore strongly influences the diversity
of the individuals in the population. All the individuals can be considered to be continu-
ously moving around within their neighborhoods, so that global communication is pos-
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Fig 2. An example of THX crossover

crossover point crossover point



sible, but not instantaneous. The second is thecoarse-grainedGAs (cgGAs), also called
island-parallel GAs [10,16], in which each node is a subpopulation performing a single-
population GA. At certain intervals, some individuals may migrate from one subpopula-
tion to another. The rate at which individuals can migrate globally is typically much
smaller than found in fgGAs. In this paper, we use a two-dimensional torus as the neigh-
borhood topology to study the fgGA model and an island GA connected in a ring to
study the cgGA model.

Two hybrid models are also proposed in this paper. One is an embedding of
fgGAs into cgGAs. Fig 3(a) shows an example in which each subpopulation on the ring
is a torus. The frequency of migration on the ring is much smaller than that within the

Fig 3. Examples of the hybrid models

(a)

single-population GA

(b)

Table 2. Best results obtained by previous approaches on the two FT problems.

reference 10x10 20x5

Baker and McMahon (1985)[22] 960 1303

Adamset al. (1988)[20] 930 1178

Carlier and Pinson (1989) [21] 930 1165
Nakano and Yamada (1991)[14] 965 1215

Yamada and Nakano (1992)[18] 930 1184

Storer et al. (1993)[15] 954 1180

Dorndorf and Pesch (1993)[3] 930 1165
Fang et al.(1993)[5] 949 1189

Juels and Wattenberg (1994)[8] 937 1174

Mattfeldet al. (1994)[12] 930 1165
Dorndorf and Pesch (1995)[4] 938 1178

Bierwirth (1995)[1] 936 1181

Kobayashiet al. (1995)[9] 930 1173

Lin et al. 930 1165



torus. The other hybrid model is a “compromise” between a cgGA and a fgGA -- the
connection topology used in the cgGA is one which is typically found in fgGAs, and a
relatively large number of nodes is used. Fig 3(b) shows an example in which each node
of the torus is a single-population GA. The frequency of migration resembles that typi-
cally found in cgGAs.

5  Computational Results

The configurations described have been implemented in GALOPPS [7], a free-
ware GA development system from the MSU GARAGe, and run on a Sun Ultra 1. As a
benchmark, two FT problems, FT10x10 and FT20x5, were tested. These two FT prob-
lems are of particular interest because almost all JSSP algorithms proposed have used
them as benchmarks.Table 2 summarizes the best results obtained by previous
approaches for the two FT problems. Except for the first three approaches, which
are based on branch and bound methods, the remaining approaches are GA-based
methods.By using single-population GAs with our THX operators, we were able to
find the global optima for the two problems, which are 930 and 1165, respectively. The
FT10x10 was also used to evaluate the effectiveness of PGAs and to compare the per-
formance of the various PGA models in the following subsections.

5.1  The Effect of Parallelizing GAs

To investigate the effect of parallelizing GAs, we used one single-population GA
and two cgGAs with different population sizes on the FT10x10 problem. In all runs, the
crossover and mutation rates were 0.6 and 0.1 respectively, and offspring replaced their
parents, with elitism protecting the best individual from replacement. We varied the
total population size in each case to test for its effect. The population sizes used were
50, 100, 250, 500, 1000, and 2000. Both cgGAs, called island I and island II, are con-
nected in a one-way ring. The best individual is migrated to the next neighbor every 50
generations. The number of nodes in the island I GA was fixed at 5, so the subpopula-
tion size is the total size divided by 5. In the island II GA, the subpopulation size is fixed
at 50, so the number of nodes is obtained by dividing the total population size by 50.
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Fig 4. Avg. (100 runs) best indiv. for three test models, various population sizes



Fig 4 shows the average best results of the three models on various population
sizes based on 100 runs. The single-population GA doesn’t show any improvement in
performance after the population size 250 mark. The reason is that the single-population
GA cannot maintain the diversity in the population as well as the PGA approaches. This
loss of diversity causes premature convergence. The problem also appears in the island I
GA model. Although premature convergence strongly deters further improvement after
the population size 250 mark, the island I GA still outperforms the single-population
GA. The island II GA doesn’t suffer as much from premature convergence. The larger
the number of subpopulations, the better diversity is maintained. An average best of 940
is reached when the population size is 2000.By considering the average turnaround
time of each node to calculate a fixed number of generations, we can analyze the
speed-up of PGAs. In general, increasing the number of processors leads to
approximately linear speed-up. For example, for a total population size fixed at
1000, the speed-up for numbers of nodes set to 5 and 20 are 4.7 and 18.5, respec-
tively. The degraded performance is due to the communication overhead. In
PGAs, we are more interested in the time needed to reach a given solution quality.
Fig 5 shows the two-dimensional cell plot of the single-population GA and the island I
GA with population size 250, based on 1000 runs. In the figure, we can observe that the
distribution of the results moves to the left corner in the island I GA. That is, the paral-
lelization of the GA yields better results using fewer evaluations. Actually, the average

Single-population GA Popsize=250 Gen=2000

500 1000 1500

940

960

980

1000

1020

1040

Number of Generations to Best

Best

Island I GA Nodes=5 Subpop=50 Gen=2000

500 1000 1500

940

960

980

1000

1020

1040

Number of Generations to Best

Best

Fig 5. (a) the single-population GA (b) the island I GA

(a) (b)

Table 3. The population structures of the PGA models

Popsize Island I Island II torus hybrid I hybrid II

250 50:5 50:5 2:25x5 2:5 islands, each island:5x5 torus 10:5x5

500 100:5 50:10 2:25x10 2:5 islands, each island:10x5 torus 10:5x10

1000 200:5 50:20 2:25x20 2:5 islands, each island:10x10 torus 10:10x10

2000 400:5 50:40 2:25x40 2:5 islands, each island:10x20 torus 20:10x10



number of generations to obtain the best result in the island I GA is 732, compared to
852 for the single-population GA.Because the average best result of the island I GA
is better than that of the single-population GA, the speed-up under “time-to-solu-
tion” is surely > 5.8.

5.2  Comparison of PGA Models

We examine 5 PGA schemes -- the two cgGAs discussed in 5.1, plus one fgGA
torus model and two hybrid models. The migration interval in cgGAs is 50 generations
(i.e. an exchange between subpopulations every 50 generations). The population struc-
tures are shown in Table 3 in a subpopulation_size:connection_topology format. In the
torus model, the subpopulation size is fixed at 2. In the hybrid I model, each island on
the ring is a torus and the number of islands is fixed at 5.

Fig 6 shows the average best of the five PGA models based on 100 runs. The hybrid I
and torus models have similar performance because both models are based on the fgGA
model. Although both models are inferior to island I when the population size is less
than 1000, their average best result improved for larger population sizes. The island II
and hybrid II models are superior to the other approaches. The essential island structure
of both models successfully alleviates premature convergence. The connection topology
of fgGAs in the hybrid II model supports the diffusion of genetic material to different
subpopulations and further enhances its search ability. Thus the excellent results of the
hybrid II model are achieved by combining the merits found in cgGAs and fgGAs.
Notice that in the hybrid II model at population size 2000, the optimal schedule is found
40 times in 100 runs.The average result is 936, which is within 0.7% of the
optimum, and the standard deviation is 5.62. Because not all previous researchers
reported their means and standard deviations, here we compare our best results
with Juels and Wattenberg [8] and Mattfeld et al.[12]. The superiority of our
method with the best PGA model is retained at significance levels better than
0.0001 compared with the results of Juels and Wattenberg and the results of
Mattfeld et al.
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In summary: In this test problem, fgGAs appear to lose genetic diversity too
quickly, in comparison to cgGAs. Improvement can be made if a different migration
strategy is applied [12]. In cgGAs, increasing the number of islands improves perfor-
mance more than simply increasing the total population size. Additionally, a good con-
nection topology can further increase the performance. Best results were obtained with
the hybrid model consisting of cgGAs connected in a fgGA-style topology.

6  Summary and Conclusions

This paper describes a GA based on the G&T algorithm for the JSSP. Our exten-
sions to G&T, the THX crossover and mutation operators, are designed to transmit the
temporal relationships in the schedule. For both FT problems, the methods introduced
found the optimum. The results show that although the specific operators are difficult to
design, if problem-specific knowledge is successfully incorporated into the operators,
the GA can work more effectively on the particular problem.

We further compared single-population GAs and PGAs on the FT10x10 prob-
lem.The results suggest thatthe effect of parallelizing the GA was twofold. PGAs not
only alleviated the premature convergence problem and improve the results, but also
found the solution in a shorter time compared to single-population GAs. We also
reported on various PGA models. In cgGAs, the number of islands used in the run had a
greater positive effect on performance than simply increasing population size. In the
fgGA model, premature convergence was still a problem, since the overlapping subpop-
ulations are susceptible to domination by high-fitness individuals. Finally, the hybrid II
model performed best due to the integration of the advantages of cgGAs and fgGAs, and
the results are very encouraging when compared to previous approaches.
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