Toward the Optimization of a Class of Black Box Optimization
Algorithms

Gang Wang

Erik D. Goodman

William F. Punch

Genetic Algorithms Research and Applications Group (GARAGe)
A H. Case Center and Department of Computer Science
Michigan State University
East Lansing, MI 48824
wangganl@cps.msu.edu goodman@egr.msu.edu punch@cps.msu.edu

Abstract

Many black box optimization algorithms have suf-
ficient flexibility to allow them to adapt to the vary-
ing circumstances they encounter. These capabilities
are of two primary sorts: 1) user-determined choices
among alternative parameters, operations, and logic
structures, and 2) the algorithm-determined alterna-
tive paths chosen during the process of seeking a so-
lution to a particular problem. This paper discusses
the process of algorithm design and operation, with
the intent of integrating the seemingly distinct aspects
described above within a unified framework. We re-
late this algorithmic optimization process to the field
of dynamic process control. An approach is proposed
toward the optimization of a process for controlling
a specific class of systems, and its application to dy-
namic adjustment of the algorithm used in the search
problem. An instance of this approach in genetic al-
gorithms is demonstrated. The experimental results
show the adaptability and robustness of the proposed
approach.

1 Introduction

Algorithms called Black Box Optimization algo-
rithms (“BBOs”) are used to address problems for
which domain knowledge is incomplete or unavailable.
Although these BBOs are not guaranteed to find the
global optimum, especially for NP-complete problems,
they are often a useful tool for discovering approxi-
mate solutions. Adaptive sampling search methods,
particularly, evolutionary computation, have recently
become very popular for such uses. They are loosely
modeled on the process of evolution in the real world,
but they are only paradigms, which means that when
given a specific problem, one must fill in a great many

details to design and implement the algorithm. Quan-
titative analysis to discover these details is difficult
simply because of the complexity of the problem space.
In the typical process of problem solving, adjustment
of the algorithms is often done empirically, with lim-
ited guidance from theory, rules of thumb, and prior
experience.

An algorithmic approach is proposed toward the
optimization of BBOs. When applied to Genetic Al-
gorithms (GAs), they provide a more uniform way to
formalize the process of designing, implementing, and
running a GA-optimization system. The experimen-
tal results show the adaptability and robustness of this
approach.

2 Issues in algorithm design for black
box optimization

In designing algorithms for solving BBO problems,
two aspects of algorithm flexibility are involved:

e External flexibility of the user-defined struc-
ture of the algorithm and parameters, determin-
ing the space of possible algorithms to be used. A
specific search paradigm includes choices one can
make to address a specific problem. For exam-
ple, with genetic algorithms, one needs to choose
(chromosomal) representation, fitness function,
genetic operators, selection method, and many
control parameters (e.g., probabilities of crossover
and mutation). Most BBO algorithms exhibit
this sort of flexibility, giving one both the freedom
and the responsibility to “tune” the algorithm to
the problem at hand. This is called external flex-
ibility.

e Internal adaptability of the logical structure of
any particular algorithm to learn about the search
space of the optimization problem to be solved.
For example, in genetic algorithms, the internal
adaptability is reflected in the change in the popu-
lation of individual solutions with time for better
explorating the search space and exploiting the
promising area.

The “No Free Lunch” theorem [1] in optimization
illustrates that the design of a BBO is itself an op-
timization problem. If this BBO process is complex
enough, which is true for most cases, optimization of
external flexibility parameters will be another BBO
problem. When the external flexibility parameters are
fixed directly by the user based on experience or rules
of thumb, it is hard to guarantee that the initial al-
gorithm design is good enough to achieve the desired
results.

In [4], external flexibility and internal adaptability
were considered explicitly in order to find an optimal
algorithm design for solving optimization problems.

Adaptation of control parameters during the
problem solving process by evolutionary algo-
rithms has been done previously by several authors
([2][3][14][15][16]). This work can be divided into two
primary groups: adaptation on the level of individuals
and adaptation of population-wide parameters. In a
system implemented by Baeck et al. [14], fine-tuning of
control parameters is done with each individual that
is, every individual is associated with a set of control
parameters, and the performance of these parameters
with the corresponding individuals affects the survival
of the parameters themselves.

In Breeding Genetic Algorithms [15], adaptation is
done at the population level. In that system, multiple
subpopulations with different strategies (control pa-
rameters) compete with each other, and populations
with better performance increase in size, while popu-
lations with poor performance decrease in size. How-
ever, there is no recombination or mutation of control
parameters associated with the larger or smaller sub-
populations produced.

Herdy [16] did very similar work on evolution
strategies; in his system, subpopulations with different
strategies compete, and higher level strategies com-
bine and mutate with the goal of generating better
ones. But there is no exchange of individuals be-
tween subpopulations, so they do not take advantage
of the individual-level knowledge gained from solving
the problem, which is enabled by individual migration.

As we will see in our work, higher level recombina-
tion and mutation are used to generate control param-

eters which are likely better than their predecessors,
while lower level migration of individuals makes the
performance evaluation on the search processes fair
by sharing the best knowledge gained so far in solving
the problem. This facilitates the emergence of time
varying sets of operators, parameters etc, appropriate
to the changing phases of problem solution. The work
reported here is distinct from other work in these im-
portant aspects.

In the following sections, we give a formal descrip-
tion of an optimization process for genetic algorithms
and related paradigms; then we return to the proposed
approach and discuss the relationship between con-
trol of the optimization process and optimal problem
solving by an algorithm. With this approach, some
of the external flexibilities can be handled in an al-
gorithmic way similar to the internal adaptability in
GAs. Therefore, it offers an integrated framework in
which to deal with both aspects of flexibility in genetic
algorithms.

3 Optimization of an algorithmic prob-
lem solving process

In this section, we will cast a GA-based multilevel
optimization process into the form of time-invariant
state models, and explore the optimization of the per-
formance of those models.

3.1 Algorithmic problem solving process

Following the state model notation in, for exam-
ple, [5], we shall describe the behavior of a genetic
algorithm for a single population as a time-invariant,
discrete-time system state model, as follows:

X(T+1) = f(X(T),U(T)), T €0,1,---,00,X(0) = Xg

e X = {z, --,z,} € I,, the state vector, char-
acterizes the state of the system (which captures
its internal adaptability), and for a GA, is the
set of all individuals x; in the population at time
(generation) T'.

e U ={uy, ,u,}, the input vector which denotes
the parameters of the GA (which specify its ex-
ternal flexibility) as a function of time. U(T)
represents a complete specification of all previ-
ously unspecified parameters — for example, for
the single-population simple GA paradigm, spec-
ification of crossover operator type and rate, mu-
tation operator type and rate, selection method

and fitness scaling (if any), offspring replacement
strategy, etc.

Other related subjects concerning the performance
of a system in the situation of optimization problem
include:

e Function ¢(z;), the fitness (or objective function
to be optimized) of individual z; in population
X(T).

e Function Q(X(7T)) = max?, q(z;), the maxi-
mum fitness of any individual z; in X (7).

e X* e {X|X = {z1,22,...,2%,...,x,}}, any state
which includes an optimal individual z*.

Note that if U(T) is fixed at U(0), T' > 0, then the
system described by f is a finite Markov chain, as de-
scribed, for example, in [6][7], etc. However, for the
systems to be described here, with time-varying oper-
ators and parameters, the notation of state models is
found more convenient.

Rather than discussing attainment of
a global optimum solution x*, we shall use function
G(U,X;,X¢,g,¢€) to denote the probability that sys-
tem f reaches a state X such that Q(X) is within e
of Q(Xy) from initial state X;, under the control of
input U(T'), within g generations.

For given constants g, € and optimal solution z*,
we also define a more compact notation, function F,
as follows:

F(X,U) = >

X53Q(X5)=q(z*)

Gf(U7X7XfagaE) (2)

That is, F/(X, U) means the probability that system
f moves from state X to any state with performance
Q within e of the optimum ¢(z*) within g generations
under the control of U. F captures the idea of how
promising the optimization process f is for generat-
ing near-optimal solutions beginning from an arbitrary
state X.

Unfortunately, it is practically infeasible to deter-
mine the forms of functions G and F' for many complex
BBO approaches. It is therefore useful to define func-
tions E which capture certain properties of function
F, for use in evaluation and comparision of multiple
optimization processes. Ideally, we seek an E(X,U)
which has the following property:

(VX, U0, U2)(F(X,0h) > F(X,lh)) < (B(X,U1) >
E(X,Us))

In section 4.2, we will see how function E is approx-

imated and tested in the system discussed below.

3.2 Measuring the quality of optimization

The goal of the problem solving process can be sim-
ply defined as minimizing the following expression for
My, the measure of the final solution, with (),X and
X* defined as above.

¢ |Q(X(00)) = Q(X™)]|

However, with bounded resources for example, a
maximum number of iterations, T — different optimiza-
tion processes might give very different results. There-
fore, the quality, M;, of such a bounded optimization
process, can be stated in various more practical ways:

Given a system f with fixed control in-
puts U(T), starting from X (0)

e The average time required for sys-
tem f to produce optimal solution
T3

e The average time required to pro-
duce a near-optimal solution with
fitness within € of g(z*);

e The average distance of the limit
of the trajectory Q(X(T)) from
Q(X™);

e The average time to produce a so-
lution which recurs in a large num-
ber of runs and is potentially a
global optimum solution;

e The average time to produce a
solution superior to that pro-
duced by some other optimization
method.

However, as a problem solver, not only do we need
to consider the problem itself, but also the optimal
way for solving it. Therefore, given a specific program-
ming paradigm, say, genetic algorithms or genetic pro-
gramming, the goal for optimization of this algorith-
mic problem solving process at the higher level, is not
to optimize X (T') for a fixed U(T'), but rather to op-
timize U(T') so as to minimize the measure M;. Note
that M; can have different forms, ideally or practi-
cally, as stated above. If M is in the first form listed,
we have a typical minimal time problem:

Given an initial population vector X (0) and a tar-
get best individual z*, find an optimal input vector
U(T) which changes the state X (T') of the system f
from X (0) to state X*, in minimal time.

A typical procedure in the problem solving process
is to manually try a particular function U(T), test its

performance by measure M, adjust U(T'), and repeat
until satisfied. Therefore, we have another measure
(Ms>) to evaluate the cost of this process:

e Given a system f, the number of tries of
input vectors U(T) before measure M; is
minimized.

We discuss below an approach to help to minimize
measure My, thereby increasing the robustness of the
optimization process.

3.3 Proposed approach: high level opti-
mizer (HLO)

Given a dynamic system f, with a defined quality
measure) of a state X, input vector U(T'), and mea-
sure F/ which characterizes the probability that any
state will be transformed to one with Q(X) within e
of g(z*) within time g, define its High Level Optimizer
(HLO) as:

1) Initialize m instances of system f with ran-
domly generated input vectors U, X;(T +

2) For each system f;, run f; using its control
input U; for a fixed period, then check its
performance using measure E.

3) Select among the populations according to
their performance measurements E(X;,U;),
then do recombination and mutation on pairs

of Uz

4) Select some elements of the associated pairs
of X;(T) for exchange;

5) Continue steps 2) and 3) until a stopping cri-
terion is met.

1
U 1

(GA)

X T
EI'|’|

Problem Solution Space

Figure 1: GA configuration

1 H
X1 [E— 7'%
2 .
U
2
f .
(HLO)
m .
b :

Algorithm Space

Problem Solution

Figure 2: HLO configuration

Our goal in this approach is to improve, in an algo-
rithmic fashion, one or more of the performance mea-
sures in M1. Of course, the key to actually accom-
plishing this is the definition of the function F in such
a way as to improve F' for the particular problem and
performance measure at hand. While it is clearly not
possible to accomplish this in general, it also appears
clear that we can find examples of £ which are more
useful than others for broad classes of significant prob-
lems. As we shall see in the following section, another
interesting property of this approach is its robustness;
that is, it not only tries to minimize measure My, but
also achieves low values of M.

4 DAGA2: Testing the HLO approach
on genetic algorithms

DAGA2 (Distributed Adaptive Level-two Genetic
Algorithm) [8] is an instance of the HLO approach.
In DAGA2, multiple GAs with different parameter set-
tings are supervised and evaluated dynamically. Us-
ing higher-level selection and genetic operators, each
search process (GA) has a chance to learn better con-
trols from others, thus making it possible for each in-
dividual optimization process to improve its M.

In DAGA2, control of the optimization process in-
volves the following factors:

e selection operator type and corresponding param-
eters.

e crossover operator type and crossover probability.

e mutation operator type and mutation probability.

Briefly, DAGA2 first initializes multiple GAs with
randomly generated controls, then operates its parallel
subpopulations for a fixed number of generations, eval-
uating the performance of each subpopulation using a
“level-two” fitness function E. Each level-two control

structure (chromosome) is then, with some probabil-
ity, subjected to crossover and mutation. Crossover in-
volves fitness-weighted selection of a neighboring level-
two chromosome. Migration of level-one chromosomes
among neighboring subpopulations is performed at the
same interval as the higher-level operations, assuring
the benefits of a parallel GA and the distribution of
the fitness gains made by any level-one subpopula-
tion among its neighbors. Then the subpopulations,
with possibly different individuals and typically better
(more fit according to the level-two fitness function)
operators/rates, continues to run, and the process is
repeated.

The function FE for a GA population process might
be defined in several ways. Some elements which
might be included are:

e best fitness of individuals in the GA population,

e average fitness of individuals in the GA popula-
tion,

e number of fitness function evaluations,

e diversity measure of the GA population.

Of course, considering some or all of these measures
does not allow one to estimate exactly the probabil-
ity that the algorithm will find the global optimum
solution within a particular timeframe. However, for
many practical problems, combination of certain of
these measures seems to be useful for guiding the se-
lection operation of an H LO-based GA scheme, as
seen below.

Excellent results from running DAGA2 on a variety
of common benchmark functions have been reported
elsewhere ([9]). Here we discuss its performance on
some simple functions selected to illustrate two as-
pects of DAGA2 performance: adaptability and ro-
bustness.

4.1 DAGAZ2 adaptability

Adaptability is a very general term, which usually
means the capability for a system to adjust its inter-
nal structure in order to perform a given task which
is newly presented or altered since its previous pre-
sentation. If the input vector (U(T)) is fixed, then
the adaptability of the GA refers to its capability to
evolve individual chromosomes with better fitness val-
ues. In the case of DAGA2, adaptability is found on
two levels — that within the individual GAs on the
lower level, and the capability to evolve higher level
algorithms (each GAs’ external flexibility) for better
performance.

To demonstrate simply the capability of DAGA2 to
evolve a suitable GA design or a sequence of designs
during the course of solving an optimization problem,
we run it first on a “Counting Ones” problem, which
assigns fitness as the proportion of 1’s on the chromo-
some. It is a very easy problem for a GA with ap-
propriate parameter settings; However, some crucial
parameters, probability of mutation(Pm) and prob-
ability of crossover(Pc), should be set appropriately
based on the chromosome length.

These experiments used a chromosome length of
900, population size at 400. Before running DAGA2
on the problem, we simulated a Simple GA (SGA)
within DAGAZ2, for comparison, by fixing both proba-
bility parameters like Pm and Pc and selecting specific
operators from a set to use in one single population.

pec 0,00 pcl .00 pmc 0.00 pmi 0.00
popsize 1400

08 pcl 0,80 pch 0.60 pml 0,0200 pmh 0,02
crossover: unifs

085 selection; ts

b 50 B0 850 120 150 180 210 240 270

Figure 3: best/gen in experiment 1

pec 0.00 pei 0.00 pme 0.00 pmi 0.00
popsize 14400

pel 0.60 peh 0,60 pml 0.0020 pmh 0,004
crossover: unifs

selection: rs

b 50 B0 850 120 150 180 210 240 270

Figure 4: best/gen in experiment 2.

Experiment 1 used tournament selection, uniform
crossover and bit-wise mutation, but the mutation
rate, Pm, is set too high, at 0.02/bit, for a 900-bit
chromosome. It is not surprising that SGA progress
ceased at generation 60.

Experiment 2 used roulette wheel selection, uniform
crossover and bit-wise mutation. This time, Pm was
set appropriately, but with roulette wheel selection,
selection pressure was too light; thus, although the
SGA continued to make progress, it still had not found
the optimal value within 300 generations.

pcc0.80 pci 0.06 pmc 0.05 pmi 0.05
popsize 16X25

06 pcl 0.50 peh 1.00 pml 0.0010 pmh 0.01
crossover: 1ptx 2ptx unife

085 selection: ts 15 sts sus

b 30 B0 50 120 150 180 210 240 270

Figure 5: best/gen in experiment 3

Experiment 3 illustrated the use of DAGA2. For
this case, available selection methods were tournament
selection, roulette wheel selection, stochastic remain-
der sampling and stochastic universal sampling; avail-
able crossover methods were single-point, two-point
and uniform crossover; mutation was bitwise. The
ranges for Pc and Pm were [0.5, 1.0] and [0.001, 0.01]
(per bit), respectively. In this case, the level-two fit-
ness function was defined very simply: the increase
in average fitness value in the subpopulation over the
previous level-two evaluation plus the average (raw)
fitness value in the current subpopulation. The result
is that DAGA2 typically found the optimal individ-
ual at about generation 220. Other data from that
experiment are given below.

« tselect
o rselect

srsglect
4 suselect

O 30 B0 30 120 150 180 210 240 270

Figure 6: Selection/gen in experiment 3

In all of the figures following, selection/gen means
the fraction of subpopulations (i.e., level-2 individu-
als) using each method of selection, versus generation;
crossover/gen meauns fraction of subpopulations using
each crossover method, versus generation. They show
that DAGA2 can find “suitable” parameter settings
and operators by itself.

In Figure 6, tournament selection soon dominated
other selection methods; while in Figure 7, several
crossover operators competed; eventually, one-point
crossover and uniform crossover were favored.

In Figure 8, the average value of Pc among all sub-

x onept
o twopt
unifi

b 30 B0 50 120 150 180 210 240 270

Figure 7: Crossover/gen in experiment 3

0.1
0.2
0.3
04
0.5
08
0.7

o W\/\M

0.3

o 30 ;1 30 120 150 180 210 240 270

Figure 8: Pc/gen in experiment 3

GAs clustered around 0.8; Figure 9 shows the obvious
trace of Pm evolution, by eventually allowing only one
or two bit mutation per chromosome. The average of
Pm among all subGAs decreased from above 0.005 to
around 0.0015 (note that from the schema theorem
[10], it is reasonable to assign Pm around 0.0015 if
the chromosome length is 900). It should be empha-
sized that this evolution of upper-level control param-
eters occurs without user intervention, except to set
the search ranges initially. In our experience, DAGA2
was very insensitive to those ranges, even working rea-
sonably well, for example, when they are set to their
extremes ([0, 1]).

While Figure 5 - Figure 9 represent a single run,
the results of repeated runs with different random
seeds closely resembled them, nearly duplicating the
operator usage percentage and probability histories.

We have seen in experiment 3 that DAGA2 has
the ability to evolve suitable control parameters. Fur-
thermore, the values found by DAGA2 were tested
as static settings for an SGA in experiment 4, us-
ing tournament selection, uniform crossover, Pm at
0.0015, and Pc at 0.8, which were found to be effec-
tive in experiment 3. The result is much better than
those in experiments 1 and 2, and even better than
that of experiment 3, which is also not surprising. As
we see in the definition of DAGA2, control parame-
ters in the subGAs are initialized randomly in a given

0.000:
0.001
0.001
0.002,
0.002:
0.003
0.003
0.004,

0.004!

0.005,
0 30 ElS a0 120 150 180 210 240 270

Figure 9: Pm/gen in experiment 3

=] Best Fitness

pec0.00 pei 0.00 pmc 0.60 pmi 0.00
popsize 1X400

06 pel 0.80 peh 0.80 prl 0,0015 pmh 0.0015
crossover: unifi

0.85 mutation; normal_mutate

selection: tselect

07 Best; 1000000

D 3 b0 50 120 10 e 210 240 270

Figure 10: Best/gen in experiment 4

range, so the system always needs some time (genera-
tions) to “adjust” to optimal values; thus, it is natural
that DAGAZ2 doesn’t behave better than an SGA with
suitable parameter settings on this task, which is suffi-
ciently simple task that static values for these settings
are appropriate throughout the entire run. As we shall
see in other experiments on more difficult problems,
for which it is harder to find good parameter settings,
or on which static parameter settings and genetic oper-
ator choices represent a limitation, DAGA2 performs
rather well.

4.2 Robustness of DAGA2 performance

Given a system and a task, one could consider the
robustness of the system to be its capacity to achieve
a desired value of M; given randomly selected values
for system inputs (U(0), fixed for all T > 0), from
within a given range of possible values.

Holland described a “Royal Road with potholes”
problem at ICGA-93 ([11]), in which he challenged GA
methods to complete the assembly of building blocks
to level 3 (the penultimate level) of a level-4 problem
— i.e., to generate a chromosome with either the first
eight or last eight blocks set appropriately. He used a
“Cohort GA” ([12]) to attain level 3 with high proba-
bility in 10,000 function evaluations. However, we use
here the more difficult, level-4 Royal Road simply be-

cause we wished to study the robustness of DAGA2 on
a problem which was difficult, but in which we could
easily visualize the nature of the difficulty.

e Control of level two DAGA2 process

For this experiment, DAGA2 was configured so
that each subpopulation had 8 (adjacent and diagonal)
neighbors. Among level-one subpopulations, DAGA2
used Pm in the range [0.0, 0.002], tournament se-
lection (tourneysize 2), one-point, two-point and uni-
form crossover, bitwise mutation or multi-bit mutation
([13]), and offspring replacing parents. The range of
level-1 crossover values, Pc, is shown in Table 1, as
are tr, the number of generations (level 1) between
operations at level 2, and Pci, the fraction of a level-1
subpopulation migrated to its neighbors at each in-
terval ¢tr. Probability of mutation of level-2 (control)
parameters, Pmc, was 0.3, and crossover probability
among parameter strings, Pecc, was 0.8. All runs were
terminated when Royal Road level 4 was attained or
60,000 function evaluations were performed.

e Number of level-two subpopulations

Most runs were done with 36 subpopulations of 70,
because earlier experiments with 5x5 and 4x4 arrays
with the same total population size (approximately
2,500 individuals) were much less robust in solving the
Royal Road level 4 problem. This is not surprising,
both because the smaller number of subpopulations
cannot preserve diversity as well even in an ordinary
parallel GA, and because doing more evaluations in
fewer subpopulations during each interval tr inhibits
the rate at which DAGA2 can learn about good pa-
rameter settings. That is, with 36 subpopulations and
tr=5, DAGA2 performed about 400 level-2 function
evaluations during a typical run; with fewer subpop-
ulations, it had much less opportunity to learn about
good parameter settings.

e Level two fitness functions

The one genuinely difficult decision to make for
DAGAZ2 and any other multi-level evolutionary scheme
is the choice of the level-2 fitness function, which ex-
presses what the level two processes are striving to
optimize. The goal is a function E which varies mono-
tonically with F', as described above, so it can be
used to judge which level-1 GA processes have greater
“promise” of attaining a near-optimal solution. It is
also among the most important issues to study using
a tool like DAGAZ2. Therefore, in the following experi-
ment, we used DAGA2 with a variety of level-2 fitness
functions (these investigations are ongoing).

1) Number of offspring generated with higher

Ezxpt. | Level2 Succ. Avg. Func.

Params. Times | Evaluations

5 6x6x70 20/20 47297
Pe=[0.2,0.7]
tr=>5
Pci=0.07

6 as in exp. 5 exc. | 14/20 36473
Pe=[0.1,0.6]

7 as in exp. 5 exc. | 14/20 34414
Pe=[0.0,1.0]

8 as in exp. 5 exc. | 18/20 43850
Pc=[0.1,0.8]

9 as in exp. 5 exc. | 15/20 52476
tr==8

10 as in exp. 5 exc. | 19/20 46871
Pci=0.05

Table 1: Results of experiments 5-10, showing attain-
ment of RR level 4 (successes) and average number of
function evaluations required, under various DAGA2
level-2 control settings. 6x6x70 means a 6x6 square of
subpopulations, each 70 individuals.

fitness than both parents in last ¢r genera-
tions

2) (Fitness of best individual) / (number of
function evaluations in last tr generations)

3) (Number of offspring generated with higher
fitness than both parents in last ¢r genera-
tions) / (number of function evaluations in
last ¢tr generations)

Experiment 5 and all others in Table 1 show re-
sults with fitness function (3). Experiment 5 was also
run with fitness function (1), succeeding 4 of 20 times,
with an average of 57,674 function evaluations on suc-
cessful runs. Fitness function (2) succeeded in 19 of 20
runs, with an average of 36,459 evaluations on success-
ful runs. Measures which reward progress per function
evaluation seem likely to produce superior results for
many problems when the number of allowable func-
tion evaluations is capped, as it was at 60,000 for these
runs. We do not yet know whether the greater “ex-
ploitation” produced by this per-evaluation pressure
increases or decreases the probability of success for
this and similar problems given much more generous
caps on evaluation numbers.

Experiments on this fitness function constitutes an
attempt at optimization at level 3, which is not au-
tomated in DAGA2 (that would be in DAGA3). We

believe it is important to try to characterize how to de-
fine an appropriate function for solving any particular
class of problems in the HLO framework.

e Sensitivity to level 2 parameters

Experiment 5 showed that DAGA2 could attain
Royal Road level four in 20 of 20 runs, in an aver-
age of 47,297 function evaluations. DAGA2 is clearly
not solving the level 3 problem as efficiently as Hol-
land’s Cohort GA, but that is not the goal of this
effort; we also do not know how efficiently Holland’s
Cohort GA would solve the level 4 problem. The other
experiments explored the sensitivity of DAGA2’s per-
formance to various of its level-2 parameter range set-
tings.

Experiments 6, 7 and 8 vs. 5 showed that altering
upper and lower limits (and therefore initial random
values) of Pc had a negative effect. However, even
with no limits on crossover percentage (experiment 7),
DAGA2 reached level 4 within 60,000 evaluations in
14/20 runs, demonstrating its insensitivity to this in-
put parameter, and its capacity to evolve a successful
optimization algorithm.

Experiment, 9 changed ¢r to 8 generations, which
had some impact on both success rate and number of
evaluations when successful, but success rate remained
at 75%.

Experiment 10 decreased Pci from 0.07 to 0.05,
which reduced the number of migrants to each sub-
population from each of its 8 neighbors at intervals tr
from 4 to 3. As expected, the influence on the results
was very small.

4.3 Discussion

Adaptability and robustness are two closely related
issues describing an optimization algorithm’s perfor-
mance on a given range of problems. It is obvious that
robustness depends on adaptability. From our expe-
rience of applying GAs to various problems, the ada-
pability offered by a classical GA is often not strong
enough to achieve adequate performance. At the same
time, it shows obvious sensitivity to many aspects of
the problem solving process and is not as robust as
might be expected.

DAGA2 is intended to address this shortcoming.
From the two sets of experiments above, we can see
that DAGA2 is able to adjust its internal GAs to ap-
propriate settings during the problem solving process,
thus offering a higher level of adaptability to the sys-
tem. This consequently improves its robustness, which
is a very important issue in real-world problem solv-
ing.

5 Conclusions

This paper presents a view of function optimization
as a two-level optimization process: a lower level rep-
resenting a black box optimization paradigm, with its
internal adaptability for search of the problem space,
plus a higher level algorithm which searches the space
of external flexibility of the black box paradigm. This
search process occurs “on-line” that is, within a rea-
sonable number of total function evaluations for so-
lution of the low-level optimization problem, rather
than as an “off-line” study in preparation for lower-
level problem solution.

While many questions remain to be explored, par-
ticularly regarding choice of the level-two fitness func-
tion appropriate for a given class of problems, DAGA2
appears to be successful in optimizing a particular
class of black box optimization algorithms, GAs, in an
integrated algorithmic fashion, to solve various inter-
esting problems. This demonstrates the power of the
HLO framework presented in this paper. One of our
current tasks is to quantify its thereotical and practi-
cal ability to boost performance for a given black box
optimization algorithm.

References

[1] D.H. Wolpert and W.G. Macready. No free lunch
theorems for search. Tech. Rep. No. SFI-TR-95-
02-010, Santa Fe Institute, Santa Fe, NM, 1995.

[2] T.C. Fogarty, Varying the Probability of Muta-
tion in the Genetic Algorithm, Proceedings of the
Third International Conference on Genetic Algo-
rithms, Morgan Kaufman, New York.

[3] L. Davis, Adapting Operator Probabilities In Ge-
netic Algorithms, Proceedings of the Third Inter-
national Conference on Genetic Algorithms, Mor-
gan Kaufman, New York.

[4] J.J. Grefenstette. Optimization of control param-
eters for genetic algorithms. IEEE Transactions
on Systems, Man, and Cybernetics, SMC-16(1),
pages 122-128, 1986.

[5] R. Gabasov and F. Kirillova The Qualitative The-
ory of Optimal Processes. Translated by John L.
Casti, Marcel Dekker, Inc. New York, 1976.

[6] K.A. De Jong, W.M. Spears and D.F. Gordon.
Using Markov Chains to Analyze GAFOs. Foun-
dations of Genetic Algorithms, Morgan Kaufman,
New York.

[10]

[11]

[15]

[16]

A.E. Nix and M.D. Vose. Modelling genetic al-
gorithms with Markov chains. Annals of Mathe-
matics and Artificial Intelligence #5, pages 79-
88, 1992.

G. Wang, T. Dexter, E.D. Goodman and W.F.
Punch, Optimization Of a GA and Within the
GA for a 2-Dimensional Layout Problem. Pro-
ceedings on the First International Conference on
Evolutionary Computation and Its Applications,
Russian Academy of Sciences, 1996.

G. Wang, E.D. Goodman and W.F. Punch, Si-
multaneously Multi-Level Evolutions. GARAGe
Technique Report 96-03-01. 1996.

J.H. Holland, Adaptation in Natural and Arti-
ficial Systems. Ann Arbor: The University of
Michigan Press, 1975.

M. Mitchell and J.H. Holland, When Will a Ge-
netic Algorithm Outperform Hill Climbing? Pro-
ceedings of the Fifth International Conference on
Genetic Algorithms, 1993.

John H. Holland, Personal Communications,
1996.

E.D. Goodman, An Introduction to GALOPPS —
the Genetic ALgorithm Optimized for Portability
and Parallelism System, Release 3.2, GARAGe
Tehnical Report 96-07-01. 1996.

T. Baeck, F. Hoffmeister, H. Schwefel, A Survey
of Evolution Strategies, Proceedings of the Fourth
International Conference of Genetic Algorithms,
pages 2-9, San Diego, 1991.

D. Schlierkamp-Voosen, H. Muhlenbein, Adapta-
tion of Population Sizes by Competing Subpop-
ulations, Proceedings of International Conference
on Evolutionary Computation (ICEC’96), pages
330-335, Nagoya, Japan, 1996.

M. Herdy, Reproductive Isolation as Strategy
Parameter in Hierarchical Organized Evolution
Strategies, Parallel Problem Solving from Nature
(PPSN 1II), Bruxelles, pages 207-217, September
1992.

