
Toward the Optimization of a Class of Black Box OptimizationAlgorithmsGang Wang Erik D. Goodman William F. PunchGenetic Algorithms Research and Applications Group (GARAGe)A.H. Case Center and Department of Computer ScienceMichigan State UniversityEast Lansing, MI 48824wanggan1@cps.msu.edu goodman@egr.msu.edu punch@cps.msu.eduAbstractMany black box optimization algorithms have suf-�cient exibility to allow them to adapt to the vary-ing circumstances they encounter. These capabilitiesare of two primary sorts: 1) user-determined choicesamong alternative parameters, operations, and logicstructures, and 2) the algorithm-determined alterna-tive paths chosen during the process of seeking a so-lution to a particular problem. This paper discussesthe process of algorithm design and operation, withthe intent of integrating the seemingly distinct aspectsdescribed above within a uni�ed framework. We re-late this algorithmic optimization process to the �eldof dynamic process control. An approach is proposedtoward the optimization of a process for controllinga speci�c class of systems, and its application to dy-namic adjustment of the algorithm used in the searchproblem. An instance of this approach in genetic al-gorithms is demonstrated. The experimental resultsshow the adaptability and robustness of the proposedapproach.1 IntroductionAlgorithms called Black Box Optimization algo-rithms (\BBOs") are used to address problems forwhich domain knowledge is incomplete or unavailable.Although these BBOs are not guaranteed to �nd theglobal optimum, especially for NP-complete problems,they are often a useful tool for discovering approxi-mate solutions. Adaptive sampling search methods,particularly, evolutionary computation, have recentlybecome very popular for such uses. They are looselymodeled on the process of evolution in the real world,but they are only paradigms, which means that whengiven a speci�c problem, one must �ll in a great many

details to design and implement the algorithm. Quan-titative analysis to discover these details is di�cultsimply because of the complexity of the problem space.In the typical process of problem solving, adjustmentof the algorithms is often done empirically, with lim-ited guidance from theory, rules of thumb, and priorexperience.An algorithmic approach is proposed toward theoptimization of BBOs. When applied to Genetic Al-gorithms (GAs), they provide a more uniform way toformalize the process of designing, implementing, andrunning a GA-optimization system. The experimen-tal results show the adaptability and robustness of thisapproach.2 Issues in algorithm design for blackbox optimizationIn designing algorithms for solving BBO problems,two aspects of algorithm exibility are involved:� External exibility of the user-de�ned struc-ture of the algorithm and parameters, determin-ing the space of possible algorithms to be used. Aspeci�c search paradigm includes choices one canmake to address a speci�c problem. For exam-ple, with genetic algorithms, one needs to choose(chromosomal) representation, �tness function,genetic operators, selection method, and manycontrol parameters (e.g., probabilities of crossoverand mutation). Most BBO algorithms exhibitthis sort of exibility, giving one both the freedomand the responsibility to \tune" the algorithm tothe problem at hand. This is called external ex-ibility.

� Internal adaptability of the logical structure ofany particular algorithm to learn about the searchspace of the optimization problem to be solved.For example, in genetic algorithms, the internaladaptability is reected in the change in the popu-lation of individual solutions with time for betterexplorating the search space and exploiting thepromising area.The \No Free Lunch" theorem [1] in optimizationillustrates that the design of a BBO is itself an op-timization problem. If this BBO process is complexenough, which is true for most cases, optimization ofexternal exibility parameters will be another BBOproblem. When the external exibility parameters are�xed directly by the user based on experience or rulesof thumb, it is hard to guarantee that the initial al-gorithm design is good enough to achieve the desiredresults.In [4], external exibility and internal adaptabilitywere considered explicitly in order to �nd an optimalalgorithm design for solving optimization problems.Adaptation of control parameters during theproblem solving process by evolutionary algo-rithms has been done previously by several authors([2][3][14][15][16]). This work can be divided into twoprimary groups: adaptation on the level of individualsand adaptation of population-wide parameters. In asystem implemented by Baeck et al. [14], �ne-tuning ofcontrol parameters is done with each individual { thatis, every individual is associated with a set of controlparameters, and the performance of these parameterswith the corresponding individuals a�ects the survivalof the parameters themselves.In Breeding Genetic Algorithms [15], adaptation isdone at the population level. In that system, multiplesubpopulations with di�erent strategies (control pa-rameters) compete with each other, and populationswith better performance increase in size, while popu-lations with poor performance decrease in size. How-ever, there is no recombination or mutation of controlparameters associated with the larger or smaller sub-populations produced.Herdy [16] did very similar work on evolutionstrategies; in his system, subpopulations with di�erentstrategies compete, and higher level strategies com-bine and mutate with the goal of generating betterones. But there is no exchange of individuals be-tween subpopulations, so they do not take advantageof the individual-level knowledge gained from solvingthe problem, which is enabled by individual migration.As we will see in our work, higher level recombina-tion and mutation are used to generate control param-

eters which are likely better than their predecessors,while lower level migration of individuals makes theperformance evaluation on the search processes fairby sharing the best knowledge gained so far in solvingthe problem. This facilitates the emergence of timevarying sets of operators, parameters etc, appropriateto the changing phases of problem solution. The workreported here is distinct from other work in these im-portant aspects.In the following sections, we give a formal descrip-tion of an optimization process for genetic algorithmsand related paradigms; then we return to the proposedapproach and discuss the relationship between con-trol of the optimization process and optimal problemsolving by an algorithm. With this approach, someof the external exibilities can be handled in an al-gorithmic way similar to the internal adaptability inGAs. Therefore, it o�ers an integrated framework inwhich to deal with both aspects of exibility in geneticalgorithms.3 Optimization of an algorithmic prob-lem solving processIn this section, we will cast a GA-based multileveloptimization process into the form of time-invariantstate models, and explore the optimization of the per-formance of those models.3.1 Algorithmic problem solving processFollowing the state model notation in, for exam-ple, [5], we shall describe the behavior of a geneticalgorithm for a single population as a time-invariant,discrete-time system state model, as follows:X(T+1) = f(X(T); U(T)); T 2 0; 1; � � � ;1; X(0) = X0(1)� X = fx1; � � � ; xng 2 In, the state vector, char-acterizes the state of the system (which capturesits internal adaptability), and for a GA, is theset of all individuals xi in the population at time(generation) T .� U = fu1; � � � ; urg, the input vector which denotesthe parameters of the GA (which specify its ex-ternal exibility) as a function of time. U(T)represents a complete speci�cation of all previ-ously unspeci�ed parameters { for example, forthe single-population simple GA paradigm, spec-i�cation of crossover operator type and rate, mu-tation operator type and rate, selection method

and �tness scaling (if any), o�spring replacementstrategy, etc.Other related subjects concerning the performanceof a system in the situation of optimization probleminclude:� Function q(xi), the �tness (or objective functionto be optimized) of individual xi in populationX(T).� Function Q(X(T)) = maxni=1 q(xi), the maxi-mum �tness of any individual xi in X(T).� X� 2 fX jX = fx1; x2; :::; x�; :::; xngg, any statewhich includes an optimal individual x�.Note that if U(T) is �xed at U(0), T � 0, then thesystem described by f is a �nite Markov chain, as de-scribed, for example, in [6][7], etc. However, for thesystems to be described here, with time-varying oper-ators and parameters, the notation of state models isfound more convenient.Rather than discussing attainment ofa global optimum solution x�, we shall use functionG(U;Xi; Xf ; g; �) to denote the probability that sys-tem f reaches a state X such that Q(X) is within �of Q(Xf) from initial state Xi, under the control ofinput U(T), within g generations.For given constants g, � and optimal solution x�,we also de�ne a more compact notation, function F ,as follows:F (X;U) = XXf3Q(Xf)=q(x�)Gf (U;X;Xf ; g; �) (2)That is, F (X;U) means the probability that systemf moves from state X to any state with performanceQ within � of the optimum q(x�) within g generationsunder the control of U . F captures the idea of howpromising the optimization process f is for generat-ing near-optimal solutions beginning from an arbitrarystate X .Unfortunately, it is practically infeasible to deter-mine the forms of functionsG and F for many complexBBO approaches. It is therefore useful to de�ne func-tions E which capture certain properties of functionF , for use in evaluation and comparision of multipleoptimization processes. Ideally, we seek an E(X;U)which has the following property:(8X;U1; U2)(F (X;U1) � F (X;U2)) , (E(X;U1) �E(X;U2))In section 4.2, we will see how function E is approx-imated and tested in the system discussed below.

3.2 Measuring the quality of optimizationThe goal of the problem solving process can be sim-ply de�ned as minimizing the following expression forM0, the measure of the �nal solution, with Q,X andX� de�ned as above.� jQ(X(1))�Q(X�)jHowever, with bounded resources { for example, amaximum number of iterations, T { di�erent optimiza-tion processes might give very di�erent results. There-fore, the quality, M1, of such a bounded optimizationprocess, can be stated in various more practical ways:Given a system f with �xed control in-puts U(T), starting from X(0),� The average time required for sys-tem f to produce optimal solutionx�;� The average time required to pro-duce a near-optimal solution with�tness within � of q(x�);� The average distance of the limitof the trajectory Q(X(T)) fromQ(X�);� The average time to produce a so-lution which recurs in a large num-ber of runs and is potentially aglobal optimum solution;� The average time to produce asolution superior to that pro-duced by some other optimizationmethod.However, as a problem solver, not only do we needto consider the problem itself, but also the optimalway for solving it. Therefore, given a speci�c program-ming paradigm, say, genetic algorithms or genetic pro-gramming, the goal for optimization of this algorith-mic problem solving process at the higher level, is notto optimize X(T) for a �xed U(T), but rather to op-timize U(T) so as to minimize the measure M1. Notethat M1 can have di�erent forms, ideally or practi-cally, as stated above. If M1 is in the �rst form listed,we have a typical minimal time problem:Given an initial population vector X(0) and a tar-get best individual x�, �nd an optimal input vectorU(T) which changes the state X(T) of the system ffrom X(0) to state X�, in minimal time.A typical procedure in the problem solving processis to manually try a particular function U(T), test its

performance by measureM1, adjust U(T), and repeatuntil satis�ed. Therefore, we have another measure(M2) to evaluate the cost of this process:� Given a system f , the number of tries ofinput vectors U(T) before measure M1 isminimized.We discuss below an approach to help to minimizemeasure M2, thereby increasing the robustness of theoptimization process.3.3 Proposed approach: high level opti-mizer (HLO)Given a dynamic system f , with a de�ned qualitymeasure Q of a state X , input vector U(T), and mea-sure E which characterizes the probability that anystate will be transformed to one with Q(X) within �of q(x�) within time g, de�ne its High Level Optimizer(HLO) as:1) Initialize m instances of system f with ran-domly generated input vectors U , Xi(T +1) = fi(Xi(T); Ui(T)), 1 � i � m.2) For each system fi, run fi using its controlinput Ui for a �xed period, then check itsperformance using measure E.3) Select among the populations according totheir performance measurements E(Xi; Ui),then do recombination and mutation on pairsof Ui.4) Select some elements of the associated pairsof Xi(T) for exchange;5) Continue steps 2) and 3) until a stopping cri-terion is met.
f

(GA)

x

x

x

E

E

E

Problem Solution Space

1

1

1

1

1 1

1

1

1

2

m

2

m

U1

Figure 1: GA con�guration

U
f

(HLO)

U

U

f

f

x

x

x

x

EE

2
2

2 2

1
1

1
1

1

1

1

1

1

m

1

m

n

n

1

1

1m

Algorithm Space Problem Solution
Space

x

x

2

2

1

mFigure 2: HLO con�gurationOur goal in this approach is to improve, in an algo-rithmic fashion, one or more of the performance mea-sures in M1. Of course, the key to actually accom-plishing this is the de�nition of the function E in sucha way as to improve F for the particular problem andperformance measure at hand. While it is clearly notpossible to accomplish this in general, it also appearsclear that we can �nd examples of E which are moreuseful than others for broad classes of signi�cant prob-lems. As we shall see in the following section, anotherinteresting property of this approach is its robustness;that is, it not only tries to minimize measure M1, butalso achieves low values of M2.4 DAGA2: Testing the HLO approachon genetic algorithmsDAGA2 (Distributed Adaptive Level-two GeneticAlgorithm) [8] is an instance of the HLO approach.In DAGA2, multiple GAs with di�erent parameter set-tings are supervised and evaluated dynamically. Us-ing higher-level selection and genetic operators, eachsearch process (GA) has a chance to learn better con-trols from others, thus making it possible for each in-dividual optimization process to improve its M1.In DAGA2, control of the optimization process in-volves the following factors:� selection operator type and corresponding param-eters.� crossover operator type and crossover probability.� mutation operator type and mutation probability.Briey, DAGA2 �rst initializes multiple GAs withrandomly generated controls, then operates its parallelsubpopulations for a �xed number of generations, eval-uating the performance of each subpopulation using a\level-two" �tness function E. Each level-two control

structure (chromosome) is then, with some probabil-ity, subjected to crossover and mutation. Crossover in-volves �tness-weighted selection of a neighboring level-two chromosome. Migration of level-one chromosomesamong neighboring subpopulations is performed at thesame interval as the higher-level operations, assuringthe bene�ts of a parallel GA and the distribution ofthe �tness gains made by any level-one subpopula-tion among its neighbors. Then the subpopulations,with possibly di�erent individuals and typically better(more �t according to the level-two �tness function)operators/rates, continues to run, and the process isrepeated.The function E for a GA population process mightbe de�ned in several ways. Some elements whichmight be included are:� best �tness of individuals in the GA population,� average �tness of individuals in the GA popula-tion,� number of �tness function evaluations,� diversity measure of the GA population.Of course, considering some or all of these measuresdoes not allow one to estimate exactly the probabil-ity that the algorithm will �nd the global optimumsolution within a particular timeframe. However, formany practical problems, combination of certain ofthese measures seems to be useful for guiding the se-lection operation of an HLO-based GA scheme, asseen below.Excellent results from running DAGA2 on a varietyof common benchmark functions have been reportedelsewhere ([9]). Here we discuss its performance onsome simple functions selected to illustrate two as-pects of DAGA2 performance: adaptability and ro-bustness.4.1 DAGA2 adaptabilityAdaptability is a very general term, which usuallymeans the capability for a system to adjust its inter-nal structure in order to perform a given task whichis newly presented or altered since its previous pre-sentation. If the input vector (U(T)) is �xed, thenthe adaptability of the GA refers to its capability toevolve individual chromosomes with better �tness val-ues. In the case of DAGA2, adaptability is found ontwo levels { that within the individual GAs on thelower level, and the capability to evolve higher levelalgorithms (each GAs' external exibility) for betterperformance.

To demonstrate simply the capability of DAGA2 toevolve a suitable GA design or a sequence of designsduring the course of solving an optimization problem,we run it �rst on a \Counting Ones" problem, whichassigns �tness as the proportion of 1's on the chromo-some. It is a very easy problem for a GA with ap-propriate parameter settings; However, some crucialparameters, probability of mutation(Pm) and prob-ability of crossover(Pc), should be set appropriatelybased on the chromosome length.These experiments used a chromosome length of900, population size at 400. Before running DAGA2on the problem, we simulated a Simple GA (SGA)within DAGA2, for comparison, by �xing both proba-bility parameters like Pm and Pc and selecting speci�coperators from a set to use in one single population.
Figure 3: best/gen in experiment 1

Figure 4: best/gen in experiment 2.Experiment 1 used tournament selection, uniformcrossover and bit-wise mutation, but the mutationrate, Pm, is set too high, at 0.02/bit, for a 900-bitchromosome. It is not surprising that SGA progressceased at generation 60.Experiment 2 used roulette wheel selection, uniformcrossover and bit-wise mutation. This time, Pm wasset appropriately, but with roulette wheel selection,selection pressure was too light; thus, although theSGA continued to make progress, it still had not foundthe optimal value within 300 generations.

Figure 5: best/gen in experiment 3Experiment 3 illustrated the use of DAGA2. Forthis case, available selection methods were tournamentselection, roulette wheel selection, stochastic remain-der sampling and stochastic universal sampling; avail-able crossover methods were single-point, two-pointand uniform crossover; mutation was bitwise. Theranges for Pc and Pm were [0.5, 1.0] and [0.001, 0.01](per bit), respectively. In this case, the level-two �t-ness function was de�ned very simply: the increasein average �tness value in the subpopulation over theprevious level-two evaluation plus the average (raw)�tness value in the current subpopulation. The resultis that DAGA2 typically found the optimal individ-ual at about generation 220. Other data from thatexperiment are given below.
Figure 6: Selection/gen in experiment 3In all of the �gures following, selection/gen meansthe fraction of subpopulations (i.e., level-2 individu-als) using each method of selection, versus generation;crossover/gen means fraction of subpopulations usingeach crossover method, versus generation. They showthat DAGA2 can �nd \suitable" parameter settingsand operators by itself.In Figure 6, tournament selection soon dominatedother selection methods; while in Figure 7, severalcrossover operators competed; eventually, one-pointcrossover and uniform crossover were favored.In Figure 8, the average value of Pc among all sub-

Figure 7: Crossover/gen in experiment 3
Figure 8: Pc/gen in experiment 3GAs clustered around 0.8; Figure 9 shows the obvioustrace of Pm evolution, by eventually allowing only oneor two bit mutation per chromosome. The average ofPm among all subGAs decreased from above 0.005 toaround 0.0015 (note that from the schema theorem[10], it is reasonable to assign Pm around 0.0015 ifthe chromosome length is 900). It should be empha-sized that this evolution of upper-level control param-eters occurs without user intervention, except to setthe search ranges initially. In our experience, DAGA2was very insensitive to those ranges, even working rea-sonably well, for example, when they are set to theirextremes ([0, 1]).While Figure 5 - Figure 9 represent a single run,the results of repeated runs with di�erent randomseeds closely resembled them, nearly duplicating theoperator usage percentage and probability histories.We have seen in experiment 3 that DAGA2 hasthe ability to evolve suitable control parameters. Fur-thermore, the values found by DAGA2 were testedas static settings for an SGA in experiment 4, us-ing tournament selection, uniform crossover, Pm at0.0015, and Pc at 0.8, which were found to be e�ec-tive in experiment 3. The result is much better thanthose in experiments 1 and 2, and even better thanthat of experiment 3, which is also not surprising. Aswe see in the de�nition of DAGA2, control parame-ters in the subGAs are initialized randomly in a given

Figure 9: Pm/gen in experiment 3
Figure 10: Best/gen in experiment 4range, so the system always needs some time (genera-tions) to \adjust" to optimal values; thus, it is naturalthat DAGA2 doesn't behave better than an SGA withsuitable parameter settings on this task, which is su�-ciently simple task that static values for these settingsare appropriate throughout the entire run. As we shallsee in other experiments on more di�cult problems,for which it is harder to �nd good parameter settings,or on which static parameter settings and genetic oper-ator choices represent a limitation, DAGA2 performsrather well.4.2 Robustness of DAGA2 performanceGiven a system and a task, one could consider therobustness of the system to be its capacity to achievea desired value of M1 given randomly selected valuesfor system inputs (U(0), �xed for all T � 0), fromwithin a given range of possible values.Holland described a \Royal Road with potholes"problem at ICGA-93 ([11]), in which he challenged GAmethods to complete the assembly of building blocksto level 3 (the penultimate level) of a level-4 problem{ i.e., to generate a chromosome with either the �rsteight or last eight blocks set appropriately. He used a\Cohort GA" ([12]) to attain level 3 with high proba-bility in 10,000 function evaluations. However, we usehere the more di�cult, level-4 Royal Road simply be-

cause we wished to study the robustness of DAGA2 ona problem which was di�cult, but in which we couldeasily visualize the nature of the di�culty.� Control of level two DAGA2 processFor this experiment, DAGA2 was con�gured sothat each subpopulation had 8 (adjacent and diagonal)neighbors. Among level-one subpopulations, DAGA2used Pm in the range [0.0, 0.002], tournament se-lection (tourneysize 2), one-point, two-point and uni-form crossover, bitwise mutation or multi-bit mutation([13]), and o�spring replacing parents. The range oflevel-1 crossover values, Pc, is shown in Table 1, asare tr, the number of generations (level 1) betweenoperations at level 2, and Pci, the fraction of a level-1subpopulation migrated to its neighbors at each in-terval tr. Probability of mutation of level-2 (control)parameters, Pmc, was 0.3, and crossover probabilityamong parameter strings, Pcc, was 0.8. All runs wereterminated when Royal Road level 4 was attained or60,000 function evaluations were performed.� Number of level-two subpopulationsMost runs were done with 36 subpopulations of 70,because earlier experiments with 5x5 and 4x4 arrayswith the same total population size (approximately2,500 individuals) were much less robust in solving theRoyal Road level 4 problem. This is not surprising,both because the smaller number of subpopulationscannot preserve diversity as well even in an ordinaryparallel GA, and because doing more evaluations infewer subpopulations during each interval tr inhibitsthe rate at which DAGA2 can learn about good pa-rameter settings. That is, with 36 subpopulations andtr=5, DAGA2 performed about 400 level-2 functionevaluations during a typical run; with fewer subpop-ulations, it had much less opportunity to learn aboutgood parameter settings.� Level two �tness functionsThe one genuinely di�cult decision to make forDAGA2 and any other multi-level evolutionary schemeis the choice of the level-2 �tness function, which ex-presses what the level two processes are striving tooptimize. The goal is a function E which varies mono-tonically with F , as described above, so it can beused to judge which level-1 GA processes have greater\promise" of attaining a near-optimal solution. It isalso among the most important issues to study usinga tool like DAGA2. Therefore, in the following experi-ment, we used DAGA2 with a variety of level-2 �tnessfunctions (these investigations are ongoing).1) Number of o�spring generated with higher

Expt. Level2 Succ. Avg. Func.Params. Times Evaluations5 6x6x70 20/20 47297Pc=[0.2,0.7]tr=5Pci=0.076 as in exp. 5 exc. 14/20 36473Pc=[0.1,0.6]7 as in exp. 5 exc. 14/20 34414Pc=[0.0,1.0]8 as in exp. 5 exc. 18/20 43850Pc=[0.1,0.8]9 as in exp. 5 exc. 15/20 52476tr=810 as in exp. 5 exc. 19/20 46871Pci=0.05Table 1: Results of experiments 5-10, showing attain-ment of RR level 4 (successes) and average number offunction evaluations required, under various DAGA2level-2 control settings. 6x6x70 means a 6x6 square ofsubpopulations, each 70 individuals.�tness than both parents in last tr genera-tions2) (Fitness of best individual) / (number offunction evaluations in last tr generations)3) (Number of o�spring generated with higher�tness than both parents in last tr genera-tions) / (number of function evaluations inlast tr generations)Experiment 5 and all others in Table 1 show re-sults with �tness function (3). Experiment 5 was alsorun with �tness function (1), succeeding 4 of 20 times,with an average of 57,674 function evaluations on suc-cessful runs. Fitness function (2) succeeded in 19 of 20runs, with an average of 36,459 evaluations on success-ful runs. Measures which reward progress per functionevaluation seem likely to produce superior results formany problems when the number of allowable func-tion evaluations is capped, as it was at 60,000 for theseruns. We do not yet know whether the greater \ex-ploitation" produced by this per-evaluation pressureincreases or decreases the probability of success forthis and similar problems given much more generouscaps on evaluation numbers.Experiments on this �tness function constitutes anattempt at optimization at level 3, which is not au-tomated in DAGA2 (that would be in DAGA3). We

believe it is important to try to characterize how to de-�ne an appropriate function for solving any particularclass of problems in the HLO framework.� Sensitivity to level 2 parametersExperiment 5 showed that DAGA2 could attainRoyal Road level four in 20 of 20 runs, in an aver-age of 47,297 function evaluations. DAGA2 is clearlynot solving the level 3 problem as e�ciently as Hol-land's Cohort GA, but that is not the goal of thise�ort; we also do not know how e�ciently Holland'sCohort GA would solve the level 4 problem. The otherexperiments explored the sensitivity of DAGA2's per-formance to various of its level-2 parameter range set-tings.Experiments 6, 7 and 8 vs. 5 showed that alteringupper and lower limits (and therefore initial randomvalues) of Pc had a negative e�ect. However, evenwith no limits on crossover percentage (experiment 7),DAGA2 reached level 4 within 60,000 evaluations in14/20 runs, demonstrating its insensitivity to this in-put parameter, and its capacity to evolve a successfuloptimization algorithm.Experiment 9 changed tr to 8 generations, whichhad some impact on both success rate and number ofevaluations when successful, but success rate remainedat 75%.Experiment 10 decreased Pci from 0.07 to 0.05,which reduced the number of migrants to each sub-population from each of its 8 neighbors at intervals trfrom 4 to 3. As expected, the inuence on the resultswas very small.4.3 DiscussionAdaptability and robustness are two closely relatedissues describing an optimization algorithm's perfor-mance on a given range of problems. It is obvious thatrobustness depends on adaptability. From our expe-rience of applying GAs to various problems, the ada-pability o�ered by a classical GA is often not strongenough to achieve adequate performance. At the sametime, it shows obvious sensitivity to many aspects ofthe problem solving process and is not as robust asmight be expected.DAGA2 is intended to address this shortcoming.From the two sets of experiments above, we can seethat DAGA2 is able to adjust its internal GAs to ap-propriate settings during the problem solving process,thus o�ering a higher level of adaptability to the sys-tem. This consequently improves its robustness, whichis a very important issue in real-world problem solv-ing.

5 ConclusionsThis paper presents a view of function optimizationas a two-level optimization process: a lower level rep-resenting a black box optimization paradigm, with itsinternal adaptability for search of the problem space,plus a higher level algorithm which searches the spaceof external exibility of the black box paradigm. Thissearch process occurs \on-line" { that is, within a rea-sonable number of total function evaluations for so-lution of the low-level optimization problem, ratherthan as an \o�-line" study in preparation for lower-level problem solution.While many questions remain to be explored, par-ticularly regarding choice of the level-two �tness func-tion appropriate for a given class of problems, DAGA2appears to be successful in optimizing a particularclass of black box optimization algorithms, GAs, in anintegrated algorithmic fashion, to solve various inter-esting problems. This demonstrates the power of theHLO framework presented in this paper. One of ourcurrent tasks is to quantify its thereotical and practi-cal ability to boost performance for a given black boxoptimization algorithm.References[1] D.H. Wolpert and W.G. Macready. No free lunchtheorems for search. Tech. Rep. No. SFI-TR-95-02-010, Santa Fe Institute, Santa Fe, NM, 1995.[2] T.C. Fogarty, Varying the Probability of Muta-tion in the Genetic Algorithm, Proceedings of theThird International Conference on Genetic Algo-rithms, Morgan Kaufman, New York.[3] L. Davis, Adapting Operator Probabilities In Ge-netic Algorithms, Proceedings of the Third Inter-national Conference on Genetic Algorithms, Mor-gan Kaufman, New York.[4] J.J. Grefenstette. Optimization of control param-eters for genetic algorithms. IEEE Transactionson Systems, Man, and Cybernetics, SMC-16(1),pages 122-128, 1986.[5] R. Gabasov and F. Kirillova The Qualitative The-ory of Optimal Processes. Translated by John L.Casti, Marcel Dekker, Inc. New York, 1976.[6] K.A. De Jong, W.M. Spears and D.F. Gordon.Using Markov Chains to Analyze GAFOs. Foun-dations of Genetic Algorithms, Morgan Kaufman,New York.

[7] A.E. Nix and M.D. Vose. Modelling genetic al-gorithms with Markov chains. Annals of Mathe-matics and Arti�cial Intelligence #5, pages 79-88, 1992.[8] G. Wang, T. Dexter, E.D. Goodman and W.F.Punch, Optimization Of a GA and Within theGA for a 2-Dimensional Layout Problem. Pro-ceedings on the First International Conference onEvolutionary Computation and Its Applications,Russian Academy of Sciences, 1996.[9] G. Wang, E.D. Goodman and W.F. Punch, Si-multaneously Multi-Level Evolutions. GARAGeTechnique Report 96-03-01. 1996.[10] J.H. Holland, Adaptation in Natural and Arti-�cial Systems. Ann Arbor: The University ofMichigan Press, 1975.[11] M. Mitchell and J.H. Holland, When Will a Ge-netic Algorithm Outperform Hill Climbing? Pro-ceedings of the Fifth International Conference onGenetic Algorithms, 1993.[12] John H. Holland, Personal Communications,1996.[13] E.D. Goodman, An Introduction to GALOPPS {the Genetic ALgorithm Optimized for Portabilityand Parallelism System, Release 3.2, GARAGeTehnical Report 96-07-01. 1996.[14] T. Baeck, F. Ho�meister, H. Schwefel, A Surveyof Evolution Strategies, Proceedings of the FourthInternational Conference of Genetic Algorithms,pages 2-9, San Diego, 1991.[15] D. Schlierkamp-Voosen, H. Muhlenbein, Adapta-tion of Population Sizes by Competing Subpop-ulations, Proceedings of International Conferenceon Evolutionary Computation (ICEC'96), pages330-335, Nagoya, Japan, 1996.[16] M. Herdy, Reproductive Isolation as StrategyParameter in Hierarchical Organized EvolutionStrategies, Parallel Problem Solving from Nature(PPSN II), Bruxelles, pages 207-217, September1992.

