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Abstract

Evolutionary ~ Programming  (EP)  has
historically used a number of approaches for
selection of the mutation step size. Current
EP implementations typically use self-
adaptive meta-parameters for mutation step
size selection. However, one of the potential
drawbacks of this scheme is that it is not
directly responsive to the variance reduction
caused by selection. In this paper, we
investigate an alternate method for mutative
step size selection that reacts directly to the
variance-reducing effects of selection.

1 Introduction

Evolutionary  Programming (EP), when
applied to the domain of real-valued function
optimization typically creates new potential
solutions through simultaneous mutation of
the parameters of an individual solution. This
mutation is often applied in the form of
addition of a sample from some zero mean
probability distribution (typically Gaussian or
Cauchy) with a variance of ©.

EP implementers have historically used a
number of techniques for selection of the

mutation step size, o, for a given parameter.
Early EP efforts used the error value of a
given solution to calculate o; however, this
implies knowledge of the optimal value or at
least the theoretical limit for a given
optimization problem.

[Schwefel 81] introduced a method of self-
adaptation for selection of mutation step sizes.
Under this technique, each solution vector
encodes both a series of solution parameters
and a series of meta-parameters that specify
the step sizes. Each meta-parameter is also
mutated during the mutation phase, according
to the expression:

HN(0,1)+7*N (0,1
o.i':O.i*e(r (0.)+z*N(0.1))
where:
T ! ! = !
2+/n V2n

More recent adaptations of this mutation
scheme wuse a Cauchy distribution for
allocation of mutation samples [Yao 96]. This
shift has the overall effect of biasing the
search process away from local search in favor
of increased global search characteristics.



In general, a mutative operator should achieve
a balance between localized search and global
exploratory search. The more biased the
operator is toward local search, the more
likely the system is to become trapped at a
local minimum. On the other hand, a large
global bias tends to lengthen the required
search time, and at worst degenerates to
random search.

2 Variance Recapture

The mutation size must remain large enough
to counterbalance the variance-reducing
effects of selection. If the average mutation
size becomes too small, it is possible for a
single individual to quickly dominate an entire
population. The resulting “premature”
convergence is often difficult to overcome.

One of the potential drawbacks of using a self-
adaptive technique such as those offered by
[Schwefel 81] and [Yao 96] is that there is no
direct feedback between the focusing effects
of selection and the expanding effects of
mutation. Thus, it is still possible to reach a
point of premature convergence while using
these algorithms. (However, it is theoretically
possible to escape such a situation in this case
since the mutation step size is not directly
dependent on the diversity of the population.)

On a population level, it may be possible to
directly counterbalance the variance-reducing
effects of selection by choosing an appropriate
mutation size. However, this is only possible
if the effects of the mutation operator on the
population variance are predictable based
solely on the mutation size.

As an example, consider a population which
currently has a certain level of variance for
one solution parameter across the current
population. After the selection process, we
can measure the variance for that parameter
across all surviving solutions. Further, since
we can calculate how much variance a given

mutation size adds to the population, we can
reverse the calculation and select the mutation
size which allows us to recapture a given
percentage of the variance loss caused by
selection. Such an algorithm is labeled a
variance recapture (VR) algorithm. Note that
a VR algorithm is self-adaptive at a system
level — that is, it adapts to changes in the
overall system as measured by changes to the
population.

The creation of a VR mutation operator adds
an additional control parameter to the search
system, namely the targeted percentage of
recapture. This parameter allows additional
user control in that dynamic adjustment of its
value modifies the global vs. local search
characteristics of the present search. In fact, it
may be possible to place an artificial
“annealing schedule” on this parameter,
allowing the search designer to guide how
resources should be allocated as the search
progresses. Further, it may be advantageous
to cycle through phases of variance addition
by targeting greater than 100% variance
recapture. (In this sense, variance recapture
becomes somewhat of a misnomer; however,
,sustained targeting of greater than 100% of
the variance eventually leads to system
divergence, or the equivalent of random
search.)

One possible difficulty with this approach is
its dependency on the initial variance of the
population, which in turn is dependent on the
selected initializing ranges. Once the initial
variance has been selected, it may take some
time for the VR algorithm to allow sufficient
variance loss before the system begins to
locate useful or “interesting” search areas.
However, most evolutionary search algorithms
are somewhat dependent on population
initialization, though perhaps to a lesser
degree. Further, such difficulties may be
allowed for by adjusting the recapture target to
a lower value for the initial phase of the
search. ~ Deciding when to make such



adjustments and understanding their general
net effects are the targets of further research.

3 Experimental Design

Empirical testing of the VR algorithm allows
for direct comparison of the relative merits of
this approach to standard EP mutation.
However, empirical tests produce difficulties
in that the results: are often difficult to
interpret, are specific to the functions used for
testing, and rely upon the precision of the
implementation. Nonetheless, empirical
testing may give us a concrete “proof of
principle” as to whether the VR concept is
worthy of further study.

1.1 Tested Algorithms

Three systems are tested: VR mutation, VR
mutation in combination with lognormal
mutation, and a standard, self-adaptive EP.
The EP system using VR mutation (VREP) is
in all ways identical to standard EP except for
the mutation operator. Mutation values are
drawn from a Gaussian distribution. The
mutation step size for a given parameter is
selected as follows:

1. v;is the average measured variance of
parameter i across the full population
(both parents and children)

2. wjis the average measured variance of
parameter i across the selected parents
for the following generation

3. Given a recapture target ratio p (where
p=1.0 equals 100% recapture),

s
calculate t; as ¢, =p(v,—w)*=,
c

where s is the full population size
(parents and children), and ¢ is the
total number of children produced
through VR mutation.

4. Select the mutation size as the lesser of

\/Z or 0.

Note that if we assume the values of
parameter i are normally distributed in the
current population, the resulting average
variance of the next generation will
bew, + p(v, —w,), which is the desired result.

It may be useful to use the VR mutation
algorithm in combination with other forms of
mutation, such as standard lognormal EP
mutation. In order to achieve such a mixture,
the VR+LN EP system applies VR mutation
to half of the children for a given parent, and
standard lognormal mutation to the other
children. Children which are produced via
VR mutation directly inherit the lognormal
meta-parameters from their parent.  Both
parents and children produced via lognormal
mutation are used to calculate w;.

The third system selected for testing is a
standard EP using self-adaptive mutation size
selection with lognormal updates for the self-
adaptive parameter. The results from this
system should help to provide a baseline for
comparison with the VR variants.

2.1 Test Functions

We selected a number of well regarded
optimization test functions from the literature
(e.g. [Yang 97], [Savaranan 95], [Salomon
96]) as well as an original function (Sphere-
Hull) intended to be difficult for algorithms
which tend toward the population mean or
have difficulty following non-linear surfaces
(originally presented in [Patton 98]). All
functions were redefined to be oriented toward
minimization and to allow scaling to any
number of dimensions. The details of the
functions used for this evaluation are outlined
in Table 1.



Table 1. Test Functions and Initial Parameter Ranges

Function Name Initial Range
z x Sphere -100 < x; <100
ZUxZ.U Dejong f3 -5.12SX,’S5.]2T
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n-1
D Hx,,7) P sin® (50% (x,” +x,,7)"") +1.0] Schaffer 1100 < x; < 100
i=1
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[Tsutsui 97]

T Note that with origin offset of 10.0 in each dimensions, global optimum is effectively outside of initial range.
*Modified slightly from original to allow 0 global optima value




These test functions were selected because of
their ease of computation and widespread use,
which should facilitate evaluation of the
results and comparison to similar work.
Several of these functions are highly multi-
modal; and many are known to be difficult for
other search algorithms, especially under high
levels of dimensionality (i.e. in a black box
form where the search algorithm should not
necessarily  assume  independence  of
dimensions).

In order to avoid any bias introduced by axial
symmetry, all test problems were translated
away from the origin by a fixed amount in all
dimensions (e.g. a solution of (0,0) is moved
to (10,10), etc.) Note that the given
initialization ranges are in terms of the
translated origin, not the origin of the original
function.

3.1 Test Conditions

Other than the mutation algorithms employed,
all parameters remained constant across the
three systems. Each parent contributed 6
children to the selection pool for the following
generation. Standard EP tournament selection
with a tournament size of 10 was used. All
mutations were based on a Gaussian
distribution, and all used the same algorithm
for providing Gaussian samples. Population
sizes were fixed at 50 parent solutions
producing 300 (50 * 6) children each
generation for a total of 350 potential
solutions input to each tournament selection.
All tests were continued for a total of 1000
generations, and the fitness of the best
individual in each generation was recorded.
For all VR mutations, the recapture ratio was
fixed at 0.98 throughout each test.

4 Results

Each system was applied to each of the 14
different test functions for a total of 119 times.

The log)o of the average best solution value is
plotted against number of evaluations for
selected test problems in Figures 1 through 6.
Average final best values and the standard
deviation of the final best values, as well as
the best (minimum) and worst (maximum)
final best values for all test functions and
algorithms are listed in Tables 2-15.

Wilcoxon  rank-sum  2-sample location
statistics [McClave 85] were computed
between the VREP and classic LN-EP
algorithms, and also between the VR-LN-EP
and classic LN-EP. This statistic is useful in
that it can be used to calculate the probability
that the samples are drawn from distributions
with  separate means without making
assumptions about the underlying distributions
(except that they be somewhat similar). To
calculate the rank-sum, the conjoined list of
final best results for two algorithms is sorted
in increasing order. Each item on the list is
assigned the value of its position (ties share
their assigned values equally). These values
are tallied for each algorithm. The result is
two rank-sum scores which add to _n(n2+ D ,
where 7 is the total number of samples in the
list. A z statistic may then be calculated from
these rank-sums which may be used to test the
hypothesis that the two distributions are
indeed distinct. Tables 16 and 17 report the
rank-sum and z statistic for the VREP and
VR+LN EP, when compared to the classic
LN-EP for each test problem. Also, the
minimum o level required for acceptance of
the hypothesis that the distribution of the
given algorithm is shifted to the left of (i.e. is
on average better than) the LN-EP is listed.
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Figure 2. : Rosenbrock function (10 Dimensions)
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Figure 4. : Schaffer function (10 Dimensions)
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Figure 5. : Sphere hull function (10 Dimensions)
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Algorithm Ave. Best S.Dev. Best Min Best Max Best
VREP 8.06E-07 1.21E-06 5.58E-08 1.17E-05
VR-LN 5.80E-06 2.60E-05 1.09E-18 2.31E-04
LN-EP 2.63E-06 1.60E-05 2.05E-19 1.53E-04

Table 2. Best Values for Generation 1000/1000 for Sphere Function

Algorithm Ave. Best S.Dev. Best Min Best Max Best
VREP 4.71E+00 1.09E+00 2.37E+00 1.12E+01
VR-LN 1.96E+01 3.98E+01 1.28E-02 2.97E+02
LN-EP 1.60E+01 3.66E+01 5.06E-03 2.31E+02

Table 3. Best

Values for Generation 1000/1000 for Rosenbrock Function

Algorithm Ave. Best S.Dev. Best Min Best Max Best
VREP 1.28E-02 1.05E-01 9.00E-08 1.05E+00
VR-LN 1.36E+00 1.06E+00 6.95E-16 4.39E+00
LN-EP 1.53E+00 1.10E+00 -5.00E-16 5.02E+00

Table 4. Best Values for Generation 1000/1000 for Bohache

vsky Function

Algorithm Ave. Best S.Dev. Best Min Best Max Best
VREP 3.23E-04 1.59E-04 8.89E-05 1.17E-03
VR-LN 2.27E+00 2.31E+00 1.26E-09 1.21E+01
LN-EP 2.60E+00 2.26E+00 1.03E-09 1.14E+01

Table 5. Best Values for Generation 1000/1000 for Ackley Function

200'000 250'000 300'000



Algorithm Ave. Best S.Dev. Best Min Best Max Best
VREP 5.37E+00 2.22E+00 1.34E-03 1.02E+01
VR-LN 2.21E+01 1.41E+01 2.98E+00 8.56E+01
LN-EP 2.44E+01 1.34E+01 2.98E+00 7.16E+01

Table 6. Best Values for Generation 1000/1000 for Rastrigin Function

Algorithm Ave. Best S.Dev. Best Min Best Max Best
VREP 4.65E-03 1.97E-03 1.04E-03 1.14E-02
VR-LN 2.78E-01 1.34E+00 5.24E-08 1.34E+01
LN-EP 7.63E-01 2.69E+00 1.97E-09 2.02E+01

Table 7. Best Values for Generation 1000/1000 for Sphere hull Function

Algorithm Ave. Best S.Dev. Best Min Best Max Best
VREP 0.00E+00 0.00E+00 0.00E+00 0.00E+00
VR-LN 7.56E-02 3.22E-01 0.00E+00 2.00E+00
LN-EP 7.56E-02 3.22E-01 0.00E+00 2.00E+00

Table 8. Best Values for Generation 1000/1000 for Dejong f3Function

Algorithm Ave. Best S.Dev. Best Min Best Max Best
VREP 4.66E-18 1.07E-17 2.72E-20 7.95E-17
VR-LN 3.32E-10 3.58E-09 7.76E-34 3.93E-08
LN-EP 5.13E-09 5.57E-08 1.01E-33 6.10E-07

Table 9. Best Values for Generation 1000/1000 for Dejong f4Function

Algorithm Ave. Best S.Dev. Best Min Best Max Best
VREP 2.93E-01 7.08E-02 1.59E-01 6.04E-01
VR-LN 1.57E+01 9.21E+00 9.00E-01 4.54E+01
LN-EP 1.60E+01 1.01E+01 1.29E+00 5.12E+01

Table 10. Best Values for Generation 1000/1000 for Schaffer Function

Algorithm Ave. Best S.Dev. Best Min Best Max Best
VREP 2.39E+00 6.40E-01 7.85E-01 4.00E+00
VR-LN 3.90E+00 4.88E+00 3.23E-01 3.89E+01
LN-EP 4.01E+00 5.02E+00 4.35E-01 4.98E+01

Table 11. Best Values for Generation 1000/1000 for Yip & Pao Function

Algorithm Ave. Best S.Dev. Best Min Best Max Best
VREP 9.35E-05 8.33E-05 2.68E-06 5.68E-04
VR-LN 1.04E+01 1.12E+02 9.91E-16 1.23E+03
LN-EP 1.52E-01 1.53E+00 1.09E-19 1.67E+01

Table 12. Best Values for Generation 1000/1000 for Schwefel 1 Function




Algorithm Ave. Best S.Dev. Best Min Best Max Best
VREP 5.05E+02 2.13E+02 1.20E-04 1.05E+03
VR-LN 9.62E+02 2.97E+02 1.18E+02 1.66E+03
LN-EP 9.20E+02 3.04E+02 1.18E+02 1.72E+03

Table 13. Bes

t Values for Generation 1000/1000 for Schwefel 2 Function

Algorithm Ave. Best S.Dev. Best Min Best Max Best
VREP 8.06E-02 5.03E-02 2.43E-03 2.76E-01
VR-LN 2.42E-01 2.85E-01 9.86E-03 2.23E+00
LN-EP 2.87E-01 3.75E-01 2.21E-02 2.24E+00

Table 14. Best Values for Generation 1000/1000 for Griewangk Function

Algorithm Ave. Best S.Dev. Best Min Best Max Best
VREP 6.84E+00 4.29E+00 3.65E-07 1.80E+01
VR-LN 1.25E+01 7.00E+00 1.11E-23 3.75E+01
LN-EP 1.32E+01 6.43E+00 1.45E-25 3.19E+01

Table 15. Best Values for Generation 1000/1000 for FM matching Function




Function Rank Sum of VREP Z statistic Minimum o for
LvreEP™ULN-EP
Schaffer 6105 -15.2813 0
Dejong f3 6441 -14.6486 0
Rastrigin 7297 -13.0368 0
Bohachevsky 8533 -10.7094 0
FM matching 9133 -9.57964 0
Griewangk 9594 -8.71159 0
Schwaefel 2 9819 -8.28792 1.11E-16
Ackley 10083 -7.79081 3.33E-15
Rosenbrock 10351 -7.28617 1.61E-13
Yip & Pao 11997 -4.1868 1.42E-05
Sphere hull 15662 2.714309 0.996679
Dejong f4 18583 8.214481 1
Sphere 20235 11.32516 1
Schwaefel 1 20849 12.4813 1

Table 16. Wilcoxon Rank-Sum 2-Sample Location Test Statistics for pyrep™HiN-Ep

Function Rank Sum of VR+LN Z statistic Minimum o for
UVR+LN~HLN-EP

Dejong f3 8173 -11.3873 0
FM matching 12642 -2.97228 0.001478
Yip & Pao 12682 -2.89696 0.001884
Sphere hull 13125 -2.0628 0.019566
Ackley 13298 -1.73705 0.04119
Bohachevsky 13641 -1.09118 0.137596
Rastrigin 13784 -0.82192 0.205561
Rosenbrock 14186 -0.06496 0.474102
Schwaefel 1 14405 0.347409 0.635858
Schwaefel 2 15124 1.701269 0.955554
Griewangk 15205 1.85379 0.968115
Sphere 15835 3.040064 0.998817
Schaffer 15952 3.260372 0.999444

Dejong f4 17221 5.649869 1

Table 17. Wilcoxon Rank-Sum 2-Sample Location Test Statistics for pyraNx>HiN-Ep




5 Discussion

In looking at the data in Tables 2 through 15,
we note first that the VREP system
consistently displays the lowest standard
deviation among final best solution values.
Upon initial review, this result appears
somewhat unremarkable, given that the
variance of the VREP system is being strictly
scheduled. However, this increased stability
implies that the operation of selection in
combination with the reactive mutation
operator in VREP is extremely consistent for a
given  landscape, even  across the
inconsistencies of population initialization.

The apparent overlapping nature of the
distributions of final best solution fitnesses as
indicated by the mean and standard deviation
measurements of these final best solutions as
well as the minimum and maximum values,
causes difficulty in reaching any reasonable
conclusions as to the relative utility of these
two approaches except that they appear
somewhat equipollent. This overlap of
distributions also renders graphic displays
such as those in Figures 1 through 6 suspect,
since the arithmetic mean may easily be
skewed by a few outliers which converged
prematurely. For this reason we have elected
to use the Wilcoxon rank-sum 2-sampled
location test to further analyze the data.

The Wilcoxon rank-sum statistics give a much
clearer picture of the relative strengths of the
three algorithms. For example, consider the
mean and standard deviation values for the
final best values for the Dejong f4 function.
VREP appears to have a clear advantage over
classic LN-EP, and the VR+LN system seems
to have a potential advantage as well.
However, upon inspecting the minimum and
maximum values, this advantage appears less
certain since the minimum value obtained
using LN-EP is on par with that obtained by
the VR+LN system, and several orders of

magnitude better than that obtained with
VREP. Finally, if we inspect the Wilcoxon
rank-sum comparison statistics, we observe
that LN-EP consistently outperformed both
competing algorithms on the Dejong f4
function. Thus, while VREP shows a lower
mean due, in part, to its reduced standard
deviation, LN-EP consistently obtained better
results; however, being less consistent,
occasionally the LN-EP system obtained
results several orders of magnitude worse
which skewed the mean for LN-EP.

In view of the Wilcoxon test data in Table 16,
VREP clearly outperformed LN-EP on a
number of test functions, while the VR+LN
system showed only marginal improvement
for all but the Dejong f3 function. LN-EP
performed better than VREP on the Sphere
hull, Dejong f4, Sphere, and Schwefel
functions.

Finally, we note that by using only a fixed
schedule for the recapture target we may have
unduly retarded the progress at the end of
VREP search when we would expect the
primary need to be for local hill-climbing
behavior.  Specifically, we note that the
behavior of the VREP algorithm on the
Schaffer, Griewangk, Ackley, Sphere Hull,
and Schwefel 1 functions did not show any
clear signs of having reached convergence, as
is evidenced by the average performance. For
example, consider the data presented in Figure
1 and Figures 3 through 6.

6 Conclusion

Modifying the mutation size selection
algorithm in EP to react in proportion to the
actions of selection produces a system which
appears at least equipollent to classical LN-EP
for the tested functions, and which clearly
outperforms LN-EP for certain test functions.
However, such modifications do not appear to
work equally well when used in combination
with other mutation operators, at least in the



manner in which such combination was tested
here. Further, the results indicate that the
operation of this reactive mutation strategy
within an EP framework produces extremely
consistent search characteristics.

The ability to dynamically adjust the search
characteristics of the system, through
modification of the recapture target, may be of
great practical importance. Dramatic
increases of the performance potential of the
VREP algorithm may be possible by judicious
use of more complex annealing schedules for
the recapture target.

Like the standard EP mutation size selection
algorithm, the VR mutation algorithm has the
potential for use with mutation distributions
other than Gaussian. The only requirement is
the ability to predict the projected impact on
the variance of the population for a given
mutation size. Hence, it may be possible to
also apply the VR algorithm to fast EP (FEP)
[Yao 96] style systems.
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