THE PROBLEM-DEPENDENT NATURE OF PARALLEL
PROCESSING IN GENETIC PROGRAMMING

William F. Punch
Michigan State University GARAGe
A714 WellsHall, East Lansing M1, 48824
punch@cps.msu.edu

ABSTRACT

Parallel processingis an area that is just beginning to be investigatedin Genetic
Programming (GP). To date a number of conflicting reports have been generatezspaitt
to the effectiveness of paralletocessingn GP.We reportherethattheseconflicting reports
may be dueo the problem-dependemtatureof parallelprocessingn GP which hasnotbeen
found in GAs. This paperwill review: what parallel processingand speed-upmeanin the
areasof GA/GP, someconflicting resultsthat have beerreportedin the GP literature on
whetherparallel processinggives speed-ugo GP problems,and offer an answerasto why
different GP problems show different speed-up in parallel processing.

1.0 INTRODUCTION

Parallel processings an issuethat has often beenexaminedin Genetic Algorithm (GA)
researcHLin et. al. 1994, Manderickand Spiessend.989, Mulhenbein1989, Punchet. al.
1993, Tanesel 989, Petteyet. al.1987].1t is worth noting thatthereare at leastthreesenses
of parallelism in the GA literature:

» implicit parallelism This wasatermfirst coinedby Holland [Holland 1975]in someof
the early descrpitionsof GAs. Implicit parallelismis the ability of a GA to process
approximately hschemata for every n individuals evaluated in the population.

» distributedparallel processing This is the decreasén processingime a GA requiresto
processthe samenumberof indivudals as more processorsare used.In the past, GAs
have been described esbarrassinglyarallel. By this, it is meantthata typical GA can
easily be ported to run on multiple processorsbecauseof the simple processor
communication required.

* multiple population processing This is also a decreasean processingas found in the
distributed case. However, this processingchangeis due to the fact that a single
populationof size X requiresmoreevalutionsto reachsomelevel of performanceahann
subpopulationseachwith X/n individualsif eachsubpopulatioroccasionalyexchanges
solutions with other subpopulationsThis changecan be realized on either a single
processor or multiple processors.

The distributed processingand multiple populationcasescan be conflatedwhen multiple
subpopulationsre run on separatgrocessorgseecoarse-grairparallelismin Secion2.0).
Sucha conflationleadsto the claim that a parallel GA hassuperlinearspeedupSpeedups
the measureof time decreasaisedby an algorithmasmore processorsare applied.Speedup
is generallyindicatedas a relation, suchas linear speedupLinear speedupmeansthat for
everyprocessoused,a linear decreasen time is observedn the run time of the algorithm.
Superlinearspeedupmeansthat thereis a largerthanlinear decreasen time for processor
used. The use of the term superlinearspeedupis problematic,especiallyin the area of
parallel processingParallelprocessingesearcherbaveclaimedthat superlinearspeedups



not possiblein analgorithmwherethe only differencebetweensingle processowrs. multiple

processoexperimentdss the numberof processorsSummarizedas Amdahl’'s law [Amdahl

1967],thearguments asfollows. Supposeonerecordsthe time t thatan algorithmtakesto

complete on a single processor. If, instead of being distrilagexanultiple processorshe

algorithmis brokenup into smallersegementgaccordingto someparallelizationapproach)
andthosesegmentsare run sequentiallyon the samesingle processomith tg indicating the

time needed for each segment. It is not possible that the sum timé,dfealess thahsince
the sameamountof work hasto be done! The key point is the phrase‘the sameamountof

work hasto be done”. We notedin the multiple populationcasethat fewer evaluationsare

required. Clearly this meansthat less work is neededto reach the required level of

performance.Thus GAs canachievesuperlinearspeedupbut underconditionsthat require
lesswork be performedby the sum of all subprocessorshan that neededby a single
processor.

2.0 PARALLEL PROCESSING IN GAS

Parallelizationis an areathat hasbeenmuchinvestigatedn GAs for two reasonsGAs are
very easyto parallelizeand GAs typically requirea lot of processingime to solveanyreal-
world problem. As aesulttherearea numberof approacheso parallelizingGAs, depending
on the particular kind of problem being solved (see [Lin et. al. 1994] for more details):

* micro-grain parallelismt This is the simplest form of GA parallelism. Here, we
essentiallyparallelizeonly the evaluationfunction. Thereis one masternode which is
responsiblefor all GA operations (selection, crossover, mutation etc.) except the
evaluationfunction.Whenanindviduval mustbe evaluatedthe mastemodeexportsthat
individual to a slave nodesfor evaluation.When evaluationis completed,the fithess
valueis returnedto the masternode.When the masternode hasreceivedback all the
fitness values from eachindividual in the population,it continueswith normal GA
operation.Thus micro-grain parallelismis typically synchronougarallelism,since the
master node must wait till all slave nodes have completed evaluation of their individuals.

» fine-grain parallelism This form of parallelismis usedto reduceproblemsof premature
convergenceby using a spatial distribution of individuals combinedwith a crossover
operatorbasedon locale. Eachindividual in the populationoccupiessomelocationin a
spatialdistributionof the population.Whentheseindividualscrossoverthey canonly do
so with their “near neighbors”. Thusa particularly “good” individual can still dominate
the populationbut the speedat which it doesso is greatly reducedsince it must go
throughsomenumberof generationdeforeits geneticmaterialcanbe propagatedo all
other individuals in the space.This spaceof individuals can be divided such that
processorsare responsibleor individualslocatedonly in a particularpart of the space
(including having one individual per processor) Communicationin this approachcan
requirehigherbandwidthdependingon the topologyof the spaceandthe numberof near
neighbors since processorsmust pass individuals across boundariesfor crossover.
However,it is a lesssynchronouform of communicationsinceit is not requiredthat
each processor proceed in lockstep with its neighbors.

» coarse-grainparallelism(island parallelism): Thisis ananalogyto the kind of evolution
seenby Darwin on the Gallopagosslands(henceit is alsoknown asisland parallelism).
In this form of parallelism,the populationis divided into autonomoussubpopulations,
where each subpopulation is completely controlled by a separate processor.
Occassionally, each subpopulation exchangessome small number of individuals
(exportingto other subpopulationsimporting into itself). This resultsin an early, broad
searchof the searchspaceby the multiple subpopulationsfollowed by a refinementof



where in the spaceeach subpopulationsearchesbasedon what appearto be better
answerdound by neighborsubpopulationsThis is alsoan asynchronousearchprocess
since processors (and subpopulations) do not have to be run in lockstep.

As mentionedin Section 1.0, the coarse-grainparallel case is interesting becauseit
simultaneouslyusestwo approacheghat speed GA processing:the reduction in work
obtainedby having multiple subpopulationsand the reductionin time obtainedby having
those subpopulations distributed across multiple processors.

2.1 Mutli-Population GAs

Since GAs are so easily parallelized,the most interestingaspectof parallel GAs is the
reductionin work associatedvith multiple subpopulationsThere are a numberof factors
which affectthe amountof work reducedn multiple subpopulatiorGAs suchasthe number
of subpopulationghe sizeof the subpopulationgandothers,but the threemostimportantare
the frequencyof exchangethe number (and quality) of individuals exchangedand the
topology of nearneighborsin the exchangeThesehavethe mosteffect on the reductionin

work/time.

We have conducteda numberof experimentsthat explore thesevarious parametersFor
example,we evaluatedthe effectivenesof a numberof different topologiesand exchange
approachesisinga simplegraphpartitioningproblem[Lin et. al 1994]. Here,we usedtwo,
24 node3-Cube-Connected-Cyc(8-CCC)graphs.The GA usedanencodingof 48 bits, and
searchedor a partitioning of the 48 nodesinto the two 24 nodegraphs.The initial parallel
architecturegxploredwereall ring-basedarchitecturesvith a subpopulationsunningon its
own separatgrocessorOf the 8 architecturegvaluateda numberof conclusionscould be
made. First, as the number of subpopulations increase (that is, as the total populatvas size
divided into smallersubpopulationsthus keepingthe total numberof individuals the same
for all experimentsthe numberof optimal solutionsincreased. Second,as the numberof
subpopulationswas increased,we observed a super linear speedupin solution time,
indicating that not only was there a speedupfrom distributed processingput also from a
reducedworkloaddueto mulitple populations. Third, someexchangdopologieswere more
effective than others. For the 3-CCC problem, a positive-distancetopology was most
effective. Here, the topology of near neighborwas not fixed, but dynamic basedon the
Hammingdistanceof the bestindividualsin eachsubpopulationOnly thosesubpopulations
whose best indivduals had a Hamming distanceof less than 24 were allowed to make
exchanges.

Finally, we begansome experimentswith a more radical topology termed the injection

architecturetopology. Ratherthan a ring topology for exchangesthe subpopulationsvere

arranged in a hierarchy. This hierarchy Ihad interestingpropertiesFirst, asyou traversed
the hierarchyfrom the root to the leaf subpopulationsthe representatiorused by those
subpopulationsvas made coarser,less fine-grained. Thus the leaf subpopulationsused a

fairly coarse(abstractyepresentatioof the problem,while it's parentsuseda morerefined

representationOnly the root nodesubpopulatioruseda full detailedrepresentationSecond,
the exchangeof individuals was one-way,from coarseto fine grainedsubpopulationsThe

effect was to have coarse-representatiosubpopulationssearcha smaller, more abstract,
space and then inject what appearedto be promising solutions into more fine grain

representatiosubpopulation$or moredetailedexamination We continuedour experiments
usingthe CCC’s, moving to four 3-CCCgraphsrequiringfour partitionsto be discoverdby

the GA. In comparingthe positive-distanceelitist, ring topology the injection architecture
proved much more effective.



We further examinedthe effectivenes®f the injection architecturetopology on somemore

difficult, real-world problems.One such problem was the design of composite material
beams,optimizedto absorbenergyfor a fixed size [Punchet. al. 1995]. The beamwas

represented asmatrix of 24 layersof compositematerial,with eachlayerhaving20 cells of

materialto be assignedn the layer. The GA representedhe beamasa 480 elementstring,

whereeachstring elementindicateda materialto be assignedo somepartof the matrix (the

elementsize dependedn the numberof materialsthat could be used).As the evaluation
function (a form of finite elementanalysis)of the beamwas computationallyexpensivewe

compareda micro-grainedparallel approachto a simple ring topology multipopulation
approachAs expectedwhile the micro-grainedapproachgavevery nearly linear speedup,
thering topologygavemorethanlinear speedupagainindicatinga reductionin work dueto

the multiple subpopulationsi-urthermorewe usedan injection architectureopology where
“coarseness’meantthat submatricesof the beam were representedas a single element.
Again, the injection architecture outperformed the ring architecture approach.

3.0 GENETIC PROGRAMMING

Our successwith parallel GA architecturesled us to wonder about the effectivhessof

parallelizationapproaches geneticprogramming(GP) [Koza 1992]. Geneticprogramming

is a closerelativeof GA. A GP consistsf a setof individuals,a population.The individuals

areevaluatedoy an externalevaluationfunction, individualsare selectedor variousgenetic

operations (copying, mutation, crossover). There are, however, some important differences:

* thepopulationinidvidualsin a GA arestringswhile in GP stringsarereplacedby a tree
representation.

» the trees in GP are of variable length.

* thetreesin GP aretypically (thoughnot always)interpretedas programs,ratherthan
solutions.

* becausehe individuals are programs,not solutions,eachevaluationof the individual
must be tested on many test cases, thus making GP even slower than GA approaches.

SinceGP approachesharemanyof the samefeaturesasGAs, it seemedikely thatthe work
doneon parallelizationof GAs would apply. While it is clear that distributed processing
would work asin GAs, the questionwas whethermultiple subpopulationsvould havethe
same effect.

3.1 Genetic Programming Par allelization

The first experimentsve conductedwere basedon two problems,one a standardmachine
learning problem, the “ant path” problem, and a new problem we introducedwhich was
inspired by Holland’s royal road [Jones 1994], termed the “royal tree” problem.

The ant problemstartswith a 32x32 matrix, whereall of the matrix elementsare initially
empty.Some“path” throughthe matrix squaresrefilled with “food” for the antto eat. The
problem is

to startthe antat a standardpoint in the matrix, and given a set time period (typically
somethinglike 400 steps),seehow many of the “food” particlesthat ant can pick up by
walking over food elements.
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Figure1: A perfect a-level, b-level and c-level royal tree

The royal tree [Punch et. al. 1996] is a problem that we developed to be as'sthaslards”
function for testing the effectivenessof GPs. It consistsof a single basefunction that is
specializedinto as many casesas necessarydependingon the desiredcomplexity of the
resultingproblem. We definea seriesof functions,a, b, c, etc.with increasingarity. (An a
functionhasarity 1, a b hasarity 2, andsoon.) We alsodefinea numberof terminalsx, y,
andz. Foranydepth,we definea "perfect"treeasshownin Figurel. A level-atreeis ana
root nodewith a single x child. A level-btreeis a b root nodewith two level-atreesas
children. A level-ctreeis a c root nodewith threelevel-b treesas children,andsoon. A
level-e tree has depth 5 and 326 nodes, while a level-f tree has depth 6 and 1927 nodes.

The raw fitness of the tree (or any subtree) is the score of its root. Each furadtiolatests
scoreby summingthe weightedscoresof its direct children. If the child is a perfecttree of
the appropriatdevel (for instance a completelevel-ctreebeneatha d node),thenthe score
of thatsubtreetimesa FullBonusweight, is addedto the scoreof theroot. If the child has
the correct root but is not a perfect tree, ttierweightis PartialBonus If thechild'srootis
incorrect,thentheweightis Penalty After scoringtheroot, if the functionis itself the root
of a perfecttree, the final sumis multiplied by CompleteBonus. Typical valuesusedare:
FullBonus= 2, PartialBonus=1 , Penalty= 1/3,andCompleteBonus2. The scorebasecase
is a level-a tree, which hasscoreof 4 (thea---x connections worth 1, timesthe FullBonus,
times the CompleteBonus).

The reasoningbehindthis " stair-step“approachto the function is basedon the reasoning
originally usedby the royal road. Many combinationsof solutionscan be found through
geneticcombination put eachproper combinationgivesa big jump in evaluationcredit. The
FullBonusis providedto give a large credit to thosetreesthat find the correct,complete
royal tree child. Sincea deeperroyal tree,suchasa level-f tree, hasa numberof complete
royal treesas children, eachcompletesubtreefound gives a large credit to that particular
solution. The PartialBonusis usedto give credit for finding the proper,direct child for a
node,evenif thatdirectchild is not the root of a royal tree. This pressuras not asgreatas
the FullBonus but it is aneffectiveincentivesincethe scoreis determinedecursivelydown
the tree and each node receives some credit wiiewlsfits proper,directchildren.If anode
doesnot havethe correct,direct children, it is penalizedoy Penalty makingthe FullBonus
andPartialBonusevenmore effective.Finally, if the resultingtreeitself is complete thena
very large credit is given.

Thereasoningbehindtheincreasan arity requiredat eachincreasedevel of theroyal treeis
simple,we wantedto makea hardfor GP to solve. Thatis, we could simply haverequired
thata properorderingof saya b-function(multiple levelsof a 2-arity function) for the tree,



but requiring increasing arity as we climb to the next level dramatically increasesthe
difficulty of the problem, and providesa measureof how well a GP can perform. For
example,it is extremelydifficult to climb to a level-f tree and we haveneversucceededn
climbing to level-g.

We ran three setsof experimentson a level-e royal tree and ant problem using a single

population, a ring population and an injection architecture. These experimentswere

conductedusing the lilgp GP programming system from the MSU GARAGe. Each

experiment ran a maximum of 500 generations. The optimal f@luke level-eroyal treeis

122,880,andfor the antit was89. Eachproblemwasrun 16 times.Thetotal populationsize

is 1000for all experimentg1 subpopulatiorof 1000, 0r the sumof all subpopulationgqual

to 1000).Theresultsof thoseexperimentsareshownin Tablel, Table2 andTable3. These
resultsare reportedas the numberof Wins and Losses The Wins are reportedas W:(x,y)

wherex represents the number of optimal solutions found before 500 generatiogss dinel
averagagenerationin which the theoptimal solutionwasfound. The Lossesare reportedas

L:(q,r,s), whereq is the number of losses (no optimal solution fobatbre500 generations),
r is the averagebest-of-runfitness, and s is the averagegenerationwhen the best-of-run
occurred.

Table 1: Single Population Results

Problem Over Selection | Prop. Selection | Over Selection | Prop. Selection
(no mutation) (no mutation) (with mutation) | (with mutation)

ant W:(7,156) W:(2,265) W:(10,109) W:(7,112)
L:(9,78,198) L:(14,68,208) L:(6,73,300) L:(9,67,158)

royal tree W:(1,145) W:(0,0) W:(8,233) W:(0,0)
L:(15,6144,47) | L:(16,71,85) L:(8,9064,159) |L:(16.71,92)

Table 2: Multi-population results (ring of 5 subpopulations)

Problem Over Selection Prop. Selection | Over Selection | Prop. Selection
(no mutation) (no mutation) (with mutation) | (with mutation)

ant W:(4,160) W:(7,286) W:(6,208) W:(7,240)
L:(12,68,312) L:(9,71,257) L:(10,74,313) L:(9,73,181)

royal tree W:(0,0) W:(0,0) W:(0,0) W:(0,0)
L:(16,10005,338)| L:(16,83,62) L:(16,16284,373)| L:(16,76,181)

Table 3: Injection architecture results, 4 nodes feeding into 1 final result node

Problem Over Selection Prop. Selection | Over Selection | Prop. Selection
(no mutation) (no mutation) (with mutation) | (with mutation)

ant W:(2,297) W:(8,270) W:(2,116) W:(6,309)
L:(14,70,326) L:(8,70,272) L:(14,70,304) L:(10,74,256)

royal tree W:(0,0) W:(0,0) W:(0,0) W:(0,0)
L:(16,20764,395)! L:(16,81,152) L:(16,18354,405)! L:(16,83,192)

Theseresultsare suprisinggiven our previousresultswith parallelizationand GAs. For the
antproblem(exceptfor the caseof proportionalselectionwith mutation)parallelizationgave
poorerresults.Theseresultsareevenmoredramaticallydifferentfor the royal treeproblem,
where no optimal result waverfound in 64 runs of various parallel processing approaches.



To confoundthings more, Koza & Andre [Andre and Koza 1996] reportedat nearly the

sametime that, for the 5-parity problemthey achievedsuper-linearspeedupon a 64-node
transputer,indicating that they got both the multi-population and distributed processing
speedup.

3.1 Resolving the Differencesin Parallel GP Results

We examineda numberof issuesto determinethe causeof the observeddiscrepenciest-or

example Andre & Kozaexchangea muchhigherpercentag®f individualsthanwe did, but

asexpectedhis did notchangethe results.We tried othertopologiesanda hostof different

configurationgo no avail. Finally we ranthe samekind of experimenion a largersetof GP

problems.We redid similar experimentson the regressiorproblem.The regressiorproblem
is essentiallya curvefitting problem.20 pointsare proposedon the curveto be fit, andthe

GP attemptsto generatea function that hits all 20 of the pointson the curveto somesmall

toleranceWe performedthe experimentwith somelargerpopulationsizes(4900),andmore

subpopulationg7). We did a singlepopulationanda ring of 7. Resultsfor this experiment
are shown in Table 4.

Table 4. Comparison of a single population of 4900 vs. a ring of 7x700 subpopulations
for the regression problem

Architecture | Results |
Single Population (4900) W:(6,46) ‘ L:(9,16,181)
Ring of 7x700 W:(14,36) L:(2,16,180)

Clearly the ring parallel processinglid speedughe problem,asit did in the even-5parity
problem but unlike it did with the royal tree and ant problem.

We believethereasorhasdo with the “branchingfactor” associatedavith answersn the four
observedproblems.In both the regressionand even-5 parity problem, only 2 argument
functionswereused.For the parity problem,the functions were{OR, NOT, NAND, AND}
while in the theregressiorthe functionswereall 2 argumentmathfunctions{+, -, *, /protected
sin, cos} For the other problems, functions using a higher numberof argumentswere
allowed. For the ant, there were number of 3 and 4 argumentfunctions {IF, PROGS,
PROGA4} and in theoyal treeevena 5 argumenfunctionwasallowed. Thoseproblemswith
functionsallowing largernumberof argumentsreatetreeswith a higher numbeof nodesin
atreeof fixed depth(like the antandroyal tree problems)thanin problemswhosefunctions
havefewerargumentglike the regressiorandeven-5parity problem).In fact, evenbetween
the antandroyal tree problem,wherethe royal tree had higher branchingthanthe ant, the
royal tree performed more poorly than the ant.

We plan to confirm this more definitively with more tests of more GP problems,
concentrating on the differences in branching factors between the problems.

4.0 CONCLUSIONS

In this paperwe haverevieweda numberof approacheso parallelismin GA andhow these
approachesvork in GP. The effectivenessof parallel processingin GP appearsto be
problem-sensitivethoseproblemswith high branchingfactorsdo not appeaito benefitfrom
parallelprocessingvhile thoseproblemswith low branchingfactorsdo. We will continueto
explore this hypothesisby examining other GP problemsand how the branchingfactor
affects parallel performance.
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