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ABSTRACT

Parallel processing is an area that is just beginning to be investigated in Genetic
Programming (GP). To date a number of conflicting reports have been generated with respect
to the effectiveness of parallel processing in GP. We report here that these conflicting reports
may be due to the problem-dependent nature of parallel processing in GP which has not been
found in GAs. This paper will review: what parallel processing and speed-up mean in the
areas of GA/GP, some conflicting results that have been reported in the GP literature on
whether parallel processing gives speed-up to GP problems, and offer an answer as to why
different GP problems show different speed-up in parallel processing.

1.0 INTRODUCTION

Parallel processing is an issue that has often been examined in Genetic Algorithm (GA)
research [Lin et. al. 1994, Manderick and Spiessens 1989, Mulhenbein 1989, Punch et. al.
1993, Tanese 1989, Pettey et. al. 1987]. It is worth noting that there are at least three senses
of parallelism in the GA literature:

• implicit parallelism: This was a term first coined by Holland [Holland 1975] in some of
the early descrpitions of GAs. Implicit parallelism is the ability of a GA to process
approximately n3 schemata for every n individuals evaluated in the population.

• distributed parallel processing:  This is the decrease in processing time a GA requires to
process the same number of indivudals as more processors are used. In the past, GAs
have been described as embarrassingly parallel. By this, it is meant that a typical GA can
easily be ported to run on multiple processors because of the simple processor
communication required.

• multiple population processing: This is also a decrease in processing as found in the
distributed case. However, this processing change is due to the fact that a single
population of size X requires more evalutions to reach some level of performance than n
subpopulations, each with X/n individuals if each subpopulation occasionaly exchanges
solutions with other subpopulations. This change can be realized on either a single
processor or multiple processors.

The distributed processing and multiple population cases can be conflated when multiple
subpopulations are run on separate processors (see coarse-grain parallelism in Secion 2.0).
Such a conflation leads to the claim that a parallel GA has superlinear speedup. Speedup is
the measure of time decrease used by an algorithm as more processors are applied. Speedup
is generally indicated as a relation, such as linear speedup. Linear speedup means that for
every processor used, a linear decrease in time is observed in the run time of the algorithm.
Superlinear speedup means that there is a larger than linear decrease in time for processor
used. The use of the term superlinear speedup is problematic, especially in the area of
parallel processing. Parallel processing researchers have claimed that superlinear speedup is



not possible in an algorithm where the only difference between single processor vs. multiple
processor experiments is the number of processors. Summarized as Amdahl’s law [Amdahl
1967], the argument is as follows. Suppose one records the time t that an algorithm takes to
complete on a single processor. If, instead of being distributed across multiple processors, the
algorithm is broken up into smaller segements (according to some parallelization approach)
and those segments are run sequentially on the same single processor with tsi indicating the
time needed for each segment.  It is not possible that the sum time of all tsi be less than t since
the same amount of work has to be done! The key point is the phrase “the same amount of
work has to be done”. We noted in the multiple population case that fewer evaluations are
required. Clearly this means that less work is needed to reach the required level of
performance.  Thus GAs can achieve superlinear speedup, but under conditions that require
less work  be performed by the sum of all subprocessors than that needed by a single
processor.

2.0 PARALLEL PROCESSING IN GAS

Parallelization is an area that has been much investigated in GAs for two reasons: GAs are
very easy to parallelize and GAs typically require a lot of processing time to solve any real-
world problem. As a result there are a number of approaches to parallelizing GAs, depending
on the particular kind of problem being solved (see [Lin et. al. 1994] for more details):

• micro-grain parallelism: This is the simplest form of GA parallelism. Here, we
essentially parallelize only the evaluation function. There is one master node which is
responsible for all GA operations (selection, crossover, mutation etc.) except the
evaluation function. When an indviduval must be evaluated, the master node exports that
individual to a slave nodes for evaluation. When evaluation is completed, the fitness
value is returned to the master node. When the master node has received back all the
fitness values from each individual in the population, it continues with normal GA
operation. Thus micro-grain parallelism is typically synchronous parallelism, since the
master node must wait till all slave nodes have completed evaluation of their individuals.

• fine-grain parallelism: This form of parallelism is used to reduce problems of premature
convergence by using a spatial distribution of individuals combined with a crossover
operator based on locale. Each individual in the population occupies some location in a
spatial distribution of the population. When these individuals crossover, they can only do
so with their “near neighbors”. Thus a particularly “good” individual can still dominate
the population but the speed at which it does so is greatly reduced since it must go
through some number of generations before its genetic material can be propagated to all
other individuals in the space. This space of individuals can be divided such that
processors are responsible for individuals located only in a particular part of the space
(including having one individual per processor). Communication in this approach can
require higher bandwidth depending on the topology of the space and the number of near
neighbors since processors must pass individuals across boundaries for crossover.
However, it is a less synchronous form of communication since it is not required that
each processor proceed in lockstep with its neighbors.

• coarse-grain parallelism (island parallelism): This is an analogy to the kind of evolution
seen by Darwin on the Gallopagos islands (hence it is also known as island parallelism).
In this form of parallelism, the population is divided into autonomous subpopulations,
where each subpopulation is completely controlled by a separate processor.
Occassionally, each subpopulation exchanges some small number of individuals
(exporting to other subpopulations, importing into itself). This results in an early, broad
search of the search space by the multiple subpopulations, followed by a refinement of



where in the space each subpopulation searches based on what appear to be better
answers found by neighbor subpopulations. This is also an asynchronous search process
since processors (and subpopulations) do not have to be run in lockstep.

As mentioned in Section 1.0, the coarse-grain parallel case is interesting because it
simultaneously uses two approaches that speed GA processing: the reduction in work
obtained by having multiple subpopulations and the reduction in time obtained by having
those subpopulations distributed across multiple processors.

2.1 Mutli-Population GAs
Since GAs are so easily parallelized, the most interesting aspect of parallel GAs is the
reduction in work associated with multiple subpopulations. There are a number of factors
which affect the amount of work reduced in multiple subpopulation GAs such as the number
of subpopulations, the size of the subpopulations and others, but the three most important are
the frequency of exchange, the number (and quality) of individuals exchanged, and the
topology of near neighbors in the exchange. These have the most effect on the reduction in
work/time.

We have conducted a number of experiments that explore these various parameters. For
example, we evaluated the effectiveness of a number of different topologies and exchange
approaches using a simple graph partitioning problem [Lin et. al 1994]. Here, we used two,
24 node 3-Cube-Connected-Cycle (3-CCC) graphs. The GA used an encoding of 48 bits, and
searched for a partitioning of the 48 nodes into the two 24 node graphs. The initial parallel
architectures explored were all ring-based architectures with a subpopulations running on its
own separate processor. Of the 8 architectures evaluated, a number of conclusions could be
made. First, as the number of subpopulations increase (that is, as the total population size was
divided into smaller subpopulations, thus keeping the total number of individuals the same
for all experiments) the number of optimal solutions increased.  Second, as the number of
subpopulations was increased, we observed  a super linear speedup in solution time,
indicating that not only was there a speedup from distributed processing, but also from a
reduced workload due to mulitple populations.  Third, some exchange topologies were more
effective than others. For the 3-CCC problem, a positive-distance topology was most
effective. Here, the topology of near neighbor was not fixed, but dynamic based on the
Hamming distance of the best individuals in each subpopulation. Only those subpopulations
whose best indivduals had a Hamming distance of less than 24 were allowed to make
exchanges.

Finally, we began some experiments with a more radical topology termed the injection
architecture topology. Rather than a ring topology for exchanges, the subpopulations were
arranged in a hierarchy. This hierarchy had two interesting properties. First,  as you traversed
the hierarchy from the root to the leaf subpopulations, the representation used by those
subpopulations was made coarser, less fine-grained. Thus the leaf subpopulations used a
fairly coarse (abstract) representation of the problem, while it’s parents used a more refined
representation. Only the root node subpopulation used a full detailed representation. Second,
the exchange of individuals was one-way, from coarse to fine grained subpopulations. The
effect was to have coarse-representation subpopulations search a smaller, more abstract,
space and then inject what appeared to be promising solutions into more fine grain
representation subpopulations for more detailed examination. We continued our experiments
using the CCC’s, moving to four 3-CCC graphs requiring four partitions to be discoverd by
the GA. In comparing the positive-distance, elitist, ring topology the injection architecture
proved much more effective.



We further examined the effectiveness of the injection architecture topology on some more
difficult, real-world problems. One such problem was the design of composite material
beams, optimized to absorb energy for a fixed size [Punch et. al. 1995]. The beam was
represented as a matrix of 24 layers of composite material, with each layer having 20 cells of
material to be assigned in the layer. The GA represented the beam as a 480 element string,
where each string element indicated a material to be assigned to some part of the matrix (the
element size depended on the number of materials that could be used). As the evaluation
function (a form of finite element analysis) of the beam was computationally expensive, we
compared a micro-grained parallel approach to a simple ring topology multipopulation
approach. As expected, while the micro-grained approach gave very nearly linear speedup,
the ring topology gave more than linear speedup, again indicating a reduction in work due to
the multiple subpopulations. Furthermore, we used an injection architecture topology where
“coarseness” meant that submatrices of the beam were represented as a single element.
Again, the injection architecture outperformed the ring architecture approach.

3.0 GENETIC PROGRAMMING

Our success with parallel GA architectures led us to wonder about the effectivness of
parallelization approaches in genetic programming (GP) [Koza 1992]. Genetic programming
is a close relative of GA. A GP consists of a set of individuals, a population. The individuals
are evaluated by an external evaluation function, individuals are selected for various genetic
operations (copying, mutation, crossover). There are, however, some important differences:
• the population inidviduals in a GA are strings while in GP strings are replaced by a tree

representation.

• the trees in GP are of variable length.

• the trees in GP are typically (though not always) interpreted as programs, rather than
solutions.

• because the individuals are programs, not solutions, each evaluation of the individual
must be tested on many test cases, thus making GP even slower than GA approaches.

Since GP approaches share many of the same features as GAs, it seemed likely that the work
done on parallelization of GAs would apply. While it is clear that distributed processing
would work as in GAs, the question was whether multiple subpopulations would have the
same effect.

3.1 Genetic Programming Parallelization
The first experiments we conducted were based on two problems, one a standard machine
learning problem, the “ant path” problem, and a new problem we introduced which was
inspired by Holland’s royal road [Jones 1994], termed the “royal tree” problem.

The ant problem starts with a 32x32 matrix, where all of the matrix elements are initially
empty. Some “path” through the matrix squares are filled with “food” for the ant to eat. The
problem is
to start the ant at a standard point in the matrix, and given a set time period (typically
something like 400 steps), see how many of the “food” particles that ant can pick up by
walking over food elements.



A

X

      B

A         A

X         X

               C

     B         B         B

 A     A    A   A   A   A

 X     X    X   X   X   X

Figure 1: A perfect a-level, b-level and c-level royal tree

The royal tree [Punch et. al. 1996] is a problem that we developed to be used as a “standards”
function for testing the effectiveness of GPs. It consists of a single base function that is
specialized into as many cases as necessary, depending on the desired complexity of the
resulting problem.  We define a series of functions, a, b, c, etc. with increasing arity.  (An a
function has arity 1, a b has arity 2, and so on.)  We also define a number of terminals x, y,
and z.  For any depth, we define a ̀ `perfect'' tree as shown in Figure 1.  A level-a tree is an a
root node with a single x child.  A level-b tree is a b root node with two level-a trees as
children.  A level-c tree is a c root node with three level-b trees as children, and so on.  A
level-e tree has depth 5 and 326 nodes, while a level-f tree has depth 6 and 1927 nodes.

The raw fitness of the tree (or any subtree) is the score of its root. Each function calculates its
score by summing the weighted scores of its direct children.  If the child is a perfect tree of
the appropriate level (for instance, a complete level-c tree beneath a d node), then the score
of that subtree, times a FullBonus weight, is added to the score of the root.  If the child has
the correct root but is not a perfect tree, then the weight is PartialBonus.  If the child's root is
incorrect, then the weight is Penalty.  After scoring the root, if the function is itself the root
of a perfect tree, the final sum is multiplied by CompleteBonus.  Typical values used are:
FullBonus = 2, PartialBonus =1 , Penalty = 1/3, and CompleteBonus =2. The score base case
is a level-a tree, which has a score of 4 (the a---x connection is worth 1, times the FullBonus,
times the CompleteBonus).

The reasoning behind this ``stair-step'' approach to the function is based on the reasoning
originally used by the royal road. Many combinations of solutions can be found through
genetic combination, but each proper combination gives a big jump in evaluation credit. The
FullBonus is provided to give a large credit to those trees that find the correct, complete
royal tree child. Since a deeper royal tree, such as a level-f tree, has a number of complete
royal trees as children, each complete subtree found gives a large credit to that particular
solution. The PartialBonus is used to give credit for finding the proper, direct child for a
node, even if that direct child is not the root of a royal tree. This pressure is not as great as
the FullBonus, but it is an effective incentive since the score is determined recursively down
the tree and each node receives some credit when if finds its proper, direct children. If a node
does not have the correct, direct children, it is penalized by Penalty, making the FullBonus
and PartialBonus even more effective. Finally, if the resulting tree itself is complete, then a
very large credit is given.

The reasoning behind the increase in arity required at each increased level of the royal tree is
simple, we wanted to make a hard for GP to solve. That is, we could simply have required
that a proper ordering of say a b-function (multiple levels of a 2-arity function) for the tree,



but requiring increasing arity as we climb to the next level dramatically increases the
difficulty of the problem, and provides a measure of how well a GP can perform. For
example, it is extremely difficult to climb to a level-f tree and we have never succeeded in
climbing to level-g.

We ran three sets of experiments on a level-e royal tree and ant problem using a single
population, a ring population and an injection architecture. These experiments were
conducted using the lilgp GP programming system from the MSU GARAGe. Each
experiment ran a maximum of 500 generations. The optimal value for the level-e royal tree is
122,880, and for the ant it was 89. Each problem was run 16 times. The total population size
is 1000 for all experiments (1 subpopulation of 1000, or the sum of all subpopulations equal
to 1000). The results of those experiments are shown in Table 1, Table 2 and Table 3. These
results are reported as the number of Wins and Losses. The Wins are reported as W:(x,y)
where x represents the number of optimal solutions found before 500 generations, and y is the
average generation in which the the optimal solution was found. The Losses are reported as
L:(q,r,s), where q is the number of losses (no optimal solution found before 500 generations),
r is the average best-of-run fitness, and s is the average generation when the best-of-run
occurred.

Table 1: Single Population Results

Problem Over Selection Prop. Selection Over Selection Prop. Selection
(no mutation) (no mutation) (with mutation) (with mutation)

ant W:(7,156) W:(2,265) W:(10,109) W:(7,112)
L:(9,78,198) L:(14,68,208) L:(6,73,300) L:(9,67,158)

royal tree W:(1,145) W:(0,0) W:(8,233) W:(0,0)
L:(15,6144,47) L:(16,71,85) L:(8,9064,159) L:(16,71,92)

Table 2: Multi-population results (ring of 5 subpopulations)

Problem Over Selection Prop. Selection Over Selection Prop. Selection
(no mutation) (no mutation) (with mutation) (with mutation)

ant W:(4,160) W:(7,286) W:(6,208) W:(7,240)
L:(12,68,312) L:(9,71,257) L:(10,74,313) L:(9,73,181)

royal tree W:(0,0) W:(0,0) W:(0,0) W:(0,0)
L:(16,10005,338) L:(16,83,62) L:(16,16284,373) L:(16,76,181)

Table 3: Injection architecture results, 4 nodes feeding into 1 final result node

Problem Over Selection Prop. Selection Over Selection Prop. Selection
(no mutation) (no mutation) (with mutation) (with mutation)

ant W:(2,297) W:(8,270) W:(2,116) W:(6,309)
L:(14,70,326) L:(8,70,272) L:(14,70,304) L:(10,74,256)

royal tree W:(0,0) W:(0,0) W:(0,0) W:(0,0)
L:(16,20764,395) L:(16,81,152) L:(16,18354,405) L:(16,83,192)

These results are suprising given our previous results with parallelization and GAs. For the
ant problem (except for the case of proportional selection with mutation) parallelization gave
poorer results. These results are even more dramatically different for the royal tree problem,
where no optimal result was ever found in 64 runs of various parallel processing approaches.



To confound things more, Koza & Andre [Andre  and Koza 1996] reported at nearly the
same time that, for the 5-parity problem they achieved super-linear speedup on a 64-node
transputer, indicating that they got both the multi-population and distributed processing
speedup.

3.1 Resolving the Differences in Parallel GP Results
We examined a number of issues to determine the cause of the observed discrepencies. For
example, Andre & Koza exchange a much higher percentage of individuals than we did, but
as expected this did not change the results. We tried other topologies and a host of different
configurations to no avail. Finally we ran the same kind of experiment on a larger set of GP
problems. We redid similar experiments on the regression problem. The regression problem
is essentially a curve fitting problem. 20 points are proposed on the curve to be fit, and the
GP attempts to generate a function that hits all 20 of the points on the curve to some small
tolerance. We performed the experiment with some larger population sizes (4900), and more
subpopulations (7).  We did a single population and a ring of 7. Results for this experiment
are shown in Table 4.

Table 4: Comparison of a single population of 4900 vs. a ring of 7x700 subpopulations
for the regression problem

Architecture Results
Single Population (4900) W:(6,46) L:(9,16,181)
Ring of 7x700 W:(14,36) L:(2,16,180)

Clearly the ring parallel processing did speedup the problem, as it did in the even-5 parity
problem but unlike it did with the royal tree and ant problem.

We believe the reason has do with the “branching factor” associated with answers in the four
observed problems. In both the regression and even-5 parity problem, only 2 argument
functions were used. For the parity problem, the functions  were {OR, NOT, NAND, AND}
while in the the regression the functions were all 2 argument math functions {+, -, *, /protected,
sin, cos} For the other problems, functions using a higher number of arguments were
allowed. For the ant, there were number of 3 and 4 argument functions {IF, PROG3,
PROG4} and in the royal tree even a 5 argument function was allowed. Those problems with
functions allowing larger number of arguments create trees with a higher number of nodes in
a tree of fixed depth (like the ant and royal tree problems) than in problems whose functions
have fewer arguments (like the regression and even-5 parity problem). In fact, even between
the ant and royal tree problem, where the royal tree had higher branching than the ant, the
royal tree performed more poorly than the ant.

We plan to confirm this more definitively with more tests of more GP problems,
concentrating on the differences in branching factors between the problems.

4.0 CONCLUSIONS

In this paper we have reviewed a number of approaches to parallelism in GA and how these
approaches work in GP. The effectiveness of parallel processing in GP appears to be
problem-sensitive; those problems with high branching factors do not appear to benefit from
parallel processing while those problems with low branching factors do. We will continue to
explore this hypothesis by examining other GP problems and how the branching factor
affects parallel performance.
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